Synthesis and Properties of Two Twin LC Diglycidyl Ethers
139
figures also confirmed that a higher ratio resulted in greater pencil and scratch hard-
ness of the cured film. The high ratio gave higher properties due to the intense degree
of cross-linking.
In impact tests (Figure 13), twin diglycidyl ether IV exhibited higher impact
strength than twin diglycidyl ether III, especially with DDS as the curing agent.
The ability of the LC epoxy resin films to resist the blow of force is directly
influenced by the flexibility of the molecular chains in the films. A highly flexible
coating will therefore prevent the films from cracking and flaking, thus creating
an enamel that possesses low stress values. In other words, the lower curing ratio
used, the more flexible the molecular chains, and thus higher impact strength is
obtained.
Conclusions
Two twin liquid-crystalline diglycidyl ethers have been successfully synthesized.
1
Their structures were confirmed by FT-IR, H-NMR, 13C-NMR, and CHN techni-
ques. It was found that twin diglycidyl ether III yielded lower thermal and mechan-
ical properties compared to twin diglycidyl ether IV due to the presence of an O-CH3
(methoxy group). Furthermore, high curing ratios also enhanced the mechanical
properties in terms of pendulum and pencil hardness but reduced impact resistance.
Acknowledgment
The authors thank Universiti Sains Malaysia for the RU Research Grant (No. 1001=
PTEKIND=811017).
References
[1] Rosu, D., Cacaval, C. N., Musta, F., & Ciobanu, C. (2002). Thermochim. Acta, 383, 119.
[2] He, S., Shi, K., Bai, J., Zhang, Z., Li, L., Du, Z., & Zhang, B. (2001). Polymer, 42, 9641.
[3] May, C. A. (1988). Epoxy Resins: Chemistry and Technology, 2nd ed., Marcel Dekker,
New York.
[4] LeMay, J. D., & Kelley, F. N. (1986). In: Structure and Ultimate Properties of Epoxy
Resins, Dusek, K. (Ed.), Springer-Verlag: New York.
[5] Ng, H., & Manas-Zloczower, I. (1993). Polymer Eng. Sci., 33, 211.
[6] Hsieh, H. S. Y. (1990). Polymer Eng. Sci., 30, 493.
[7] Park, S. J., & Jin, J. S. (2001). J. Appl. Polymer Sci., 82, 775.
[8] Balamurugan, R., & Kannan, P. (2009). High Perform. Polymer, 21, 251.
[9] Wlodarska, M., Bak, G., Mossety-Leszczak, B., & Galina, H. (2009). J. Mater. Process.
Tech., 209, 1662.
[10] Harada, M., Sumitomo, K., Nishimoto, Y., & Ochi, M. (2009). J. Polymer Sci. B Poly-
mer Phys., 47, 156.
[11] Issam, A. M., & Ismail, J. (2006). J. Appl. Polymer Sci., 100, 1198.
[12] Kannan, P., Raja, S., & Sakthivel, P. (2004). Polymer, 45, 7895.
[13] Issam, A. M., & Ratnamalar, R. (2010). Polymer Adv. Tech., 21, 442.
[14] Segal, C. L. (1967). High Temperature Polymers, Marcel Dekker: New York.
[15] Gaina, C., Gaina, V., & Sava, M. (2001). High Perform. Polymer, 13, 269.
[16] Shukla, U., Rao, K. V., & Rakshit, A. K. (2003). J. Appl. Polymer Sci., 88, 153.
[17] Stoica, Gh., Stanciu, A., Cozan, V., Stoleriu, A., & Timpu, D. (1998). J. Macromol. Sci.
A Pure Appl. Chem., 35, 539.
[18] Sun, S.-J., & Chang, T.-C. (1996). J. Polymer Sci. A Polymer Chem., 34, 771.