Mild and Efficient Iodine-Catalyzed Direct Substitution
Letters in Organic Chemistry, 2011, Vol. 8, No. 1
79
using allylic alcohols promoted by a palladium-triphenyl phosphite
catalyst. J. Org. Chem., 2004, 69, 2595-2597; r) Kinoshita, H.;
Shinokubo, H.; Oshima, K. Water enables direct use of allyl
alcohol for tsuji-trost reaction without activators. Org. Lett., 2004,
6, 4085-4088; s) Ozawa, F.; Okamoto, H.; Kawagishi, S.;
Yamamoto, S.; Minami, T.; Yoshifuji, M. (ꢀ-Allyl)palladium
complexes bearing diphosphinidenecyclobutene ligands (DPCB):
highly active catalysts for direct conversion of allylic alcohols. J.
Am.Chem. Soc., 2002, 124, 10968-10969; t) Nishibayashi, Y.;
Shinoda, A.; Miyake, A.; Matsuzawa, H.; Sato, M. Ruthenium-
catalyzed propargylic reduction of propargylic alcohols with
silanes. Angew. Chem. Int. Ed., 2006, 45, 4835-4839; u) Sherry, B.
D.; Radosevich, A. T.; Toste, F. D. A mild C-O bond formation
catalyzed by a rhenium-oxo complex. J. Am. Chem. Soc., 2003,
125, 6076-6077; v) Qin, H.; Yamagiwa, N.; Matsunaga, S.;
Shibasaki, M. Bismuth-catalyzed direct subsitution of the hydroxy
group in alcohols with sulfonamides, carbamates, and
carboxamides. Angew. Chem. Int. Ed., 2007, 46, 409-413.
extension of substrate scope, detailed mechanism and
practical applications are underway in our laboratories.
ACKNOWLEDGEMENTS
We are grateful for the grants from the National Nature
Science Foundation of China and Chinese Academy of
Sciences for financial support.
REFERENCES AND NOTES
[1]
Muzart, J. Palladium-catalysed reactions of alcohols. Part B:
Formation of C-C and C-N bonds from unsaturated alcohols.
Tetrahedron, 2005, 61, 4179-4212.
[2]
[3]
Trost, B. M. The atom economy--a search for synthetic efficiency.
Science, 1991, 254, 1471-1477.
[5]
Some representative iodine-catalyzed organic reactions: a) Chu, C.;
Gao, S.; Sastry, M. N. V.; Yao, C. Iodine-catalyzed Michael
addition of mercaptans to ꢁ,ꢂ-unsaturated ketones under solvent-
free conditions. Tetrahedron Lett., 2005, 46, 4971-4974; b) Gao,
S.; Tzeng, T.; Sastry, M. N. V.; Chu, C.; Liu, J.; Lin, C.; Yao, C.
Iodine catalyzed conjugate addition of mercaptans to ꢁ,ꢂ-
unsaturated carboxylic acids under solvent-free condition.
Tetrahedron Lett., 2006, 47, 1889-1893; c) Lin, C.; Hsu, J.; Sastry,
M. N. V.; Fang, H.; Tu, Z.; Liu, J.; Yao, C. I2-catalyzed Michael
addition of indole and pyrrole to nitroolefins. Tetrahedron, 2005,
61, 11751-11757; d) Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S.
Elemental iodine-catalyzed coupling of alkynylsilanes with acid
chlorides: a facile synthesis of ꢁ,ꢂ-acetylenic ketones. Synlett,
2003, 11, 1722-1724; e) Yadav, J. S.; Reddy, B. V. S.; Rao, C. V.;
Rao, K. V. Elemental iodine catalyzed [4+2] cycloaddition
reactions of o-quinomethanes: an efficient synthesis of trans-fused
pyrano[3,2-c] benzopyrans. J. Chem. Soc. Perkin. Trans. I, 2002,
1401-1404; f) Firouzabadi, H.; Iranpoor, N.; Sobhani, S. A high
yielding preparation of ꢁ-trimethylsilyloxyphosphonates by
silylation of ꢁ-hydroxyphosphonates with HMDS catalyzed by
iodine. Tetrahedron Lett., 2002, 43, 3653-3655; g) Sun, J.; Dong,
Y.; Cao, L.; Wang, X.; Wang, S.; Hu, Y. Highly efficient
chemoselective deprotection of O,O-acetals and O,O-ketals
catalyzed by molecular iodine in acetone. J. Org. Chem., 2004, 69,
8932-8934; h) Varala, R.; Nuvula, S.; Adapa, S. R. Molecular
iodine-catalyzed facile procedure for N-boc protection of amines. J.
Org. Chem., 2006, 71, 8283-8286; i) Das, B.; Banerjee, J.; Ramu,
R.; Pal, R.; Ravindranath, N.; Ramesh, C. Efficient, selective
deprotection of aromatic acetates catalyzed by Amberlyst-15 or
iodine. Tetrahedron Lett., 2003, 44, 5465-5468; j) Banik, B. K.;
Chapa, M.; Marquez, J.; Cardona, M. A remarkable iodine-
catalyzed protection of carbonyl compounds. Tetrahedron Lett.,
2005, 46, 2341-2343; k) Bhosale, R. S.; Bhosale, S. V.; Wang, T.;
Zubaidha, P. K. An efficient, high yield protocol for the one-pot
synthesis of dihydropyrimidin-2(1H)-ones catalyzed by iodine.
Tetrahedron Lett. 2004, 45, 9111-9113; l) Phukan, P. Iodine as a
very powerful catalyst for three-component synthesis of protected
homoallylic amines. J. Org. Chem., 2004, 69, 4005-4006; m) Lee,
B. S.; Mahajan, S.; Janda, K. D. Molecular iodine-catalyzed imine
activation for three-component nucleophilic addition reactions.
Synlett, 2005, 1325-1327, doi:10.1002/chin.200541073; n) Lin, C.;
Fang, H.; Tu, Z.; Liu, J.; Yao, C. Stereoselective three-component
synthesis of trans-endo-decohydroquinolin-4-one derivatives from
aldehydes, aniline, and acetylcyclohexene. J. Org. Chem., 2006,
71, 6588-6591; o) Liu, Z.; Liu, L.; Shafiq, Z.; Wu, Y.; Wang, D.;
Chen, Y. Iodine-catalyzed allylation and propargylation of indoles
with allylic and propargylic acetates. Tetrahedron Lett., 2007, 48,
3963-3967.
a) Anastas P. T.; Warner, J. C. Green Chemistry: Theory and
Practice; Oxford University Press: New York, 1998; b) Anastas, P.
T.; Kirchhoff, M. M. Origins, current status, and future challenges
of green chemistry. Acc. Chem. Res., 2002, 35, 686-694; c) Li, C. J.
Quasi-nature catalysis: developing C-C bond formations catalyzed
by late transition metals in air and water. Acc. Chem. Res., 2002,
35, 533-538.
[4]
a) Nishibayashi, Y.; Milton, M. D.; Inada, Y.; Yoshikawa, M.;
Wakiji, I.; Hidai, M.; Uemura, S. Ruthenium-catalyzed propargylic
substitution reactions of propargylic alcohols with oxygen-,
nitrogen-, and phosphorus-centered nucleophiles. Chem. Eur. J.,
2005, 11, 1433-1451; b) Nishibayashi, Y.; Wakiji, I.; Hidai, M.
Novel propargylic substitution reactions catalyzed by thiolate-
bridged diruthenium complexes via allenylidene intermediates. J.
Am. Chem. Soc., 2000, 122, 11019-11020; c) Inada, Y.;
Nishibayashi, Y.; Uemura, S. Ruthenium-catalyzed asymmetric
propargylic substitution reactions of propargylic alcohols with
acetone. Angew. Chem. Int. Ed., 2005, 44, 7715-7717; d) Trost, B.
M.; Quancard, J. Palladium-catalyzed enantioselective C-3
allylation of 3-substituted-1H-indoles using trialkylboranes. J. Am.
Chem. Soc., 2006, 128, 6314-6315; e) Bandini, M.; Melloni, A.;
Umani-Ronchi, A. New versatile Pd-catalyzed allylation of indoles
via nucleophilic allylic substitution: controlling the regioselectivity.
Org. Lett., 2004, 6, 3199-3202; f) Ma, S.; Yu, S.; Peng, Z.; Guo, H.
Palladium-catalyzed functionalization of indoles with 2-
acetoxymethyl-substituted electron-deficient alkenes. J. Org.
Chem., 2006, 71, 9865-9868; g) Westermaier, M.; Mayr, H.
Electrophilic allylations and benzylations of indoles in neutral
aqueous or alcoholic solutions. Org. Lett., 2006, 8, 4791-4794; h)
Prajapati, D.; Gohain, M.; Gogoi, B. J. Novel gallium-mediated
C3-allylation of indoles and pyrroles in aqueous media promoted
by Bu4NBr. Tetrahedron Lett., 2006, 47, 3535-3539; i) Zhu, X.;
Ganesan, A. Regioselective synthesis of 3-alkylindoles mediated
by zinc triflate. J. Org. Chem., 2002, 67, 2705-2708; j) Yadav, J.
S.; Reddy, B. V. S.; Muralikrishna, P.; Srinivas, C. Zinc-mediated
Barbier reactions of pyrrole and indoles: a new method for the
alkylation of pyrrole and indoles. Tetrahedron Lett., 2002, 43,
5185-5187; k) Nunomoto, S.; Kawakami, Y.; Yamashita, Y.;
Takeuchi, H.; Eguchi, S. Regioselectivity control in alkylation
reactions of indolyl ambident anion. J. Chem. Soc. Perkin. Trans. I,
1990, 111-114, doi:10.1039/P19900000111; l) Wenkert, E.; Angell,
E. C.; Ferreira, V. F.; Michelotti, E. L.; Piettre, S. R.; Sheu, J-H.;
Swindell, C. S. Synthesis of prenylated indoles. J. Org. Chem.,
1986, 51, 2343-2351; m) Billups, W. E.; Erkes, R. S.; Reed, L. E.
Palladium catalyzed allylation of indole. Synth. Commun., 1980,
10, 147-154; n) Yasuda, M.; Somyo, T.; Baba, A. Direct carbon-
carbon bond formation from alcohols and active methylenes,
alkoxyketones, or indoles catalyzed by indium trichloride. Angew.
Chem. Int. Ed., 2006, 45, 793-796; o) Malkov, A. V.; Davis, S. L.;
Baxendale, I. R.; Mitchell, W. L.; Kocovsky, P. Molybdenum(II)-
catalyzed allylation of electron-rich aromatics and heteroaromatics.
J. Org. Chem., 1999, 64, 2751-2764; o) Tsuchimoto, T.; Tobita, K.;
Hiyama, T.; Fukuzawa, S-I. Scandium(III) triflate catalyzed
friedel-crafts alkylation with benzyl and allyl alcohols. Synlett,
1996, 6, 557-559; p) Tsuchimoto, T.; Tobita, K.; Hiyama, T.;
Fukuzawa, S-I. Scandium(III) triflate-catalyzed friedel-crafts
alkylation reactions. J. Org. Chem., 1997, 62, 6997-7005; q)
Kayaki, Y.; Koda, T.; Ikariya, T. Halide-free dehydrative allylation
[6]
[7]
a) Ma, S.; Yu, S. Palladium-catalyzed functionalization of indoles
with 2-acetoxymethyl substituted electron-deficient alkenes.
Tetrahedron Lett., 2004, 45, 8419-8422; b) Yadav, J. S.; Reddy, B.
V. S,; Basak, A. K.; Narsaiah, A. V.; Prabhakar, A.; Jagadeesh, B.
First example of the C-alkylation of indoles with Baylis-Hillmann
acetates. Tetrahedron Lett., 2005, 46, 639-641.
a) Rodriguez, A. L.; Koradin, C.; Dohle, W.; Knochel, P. Versatile
indole synthesis by a 5-endo-dig cyclization mediated by potassium
or cesium bases. Angew. Chem. Int. Ed., 2000, 39, 2488-2490; b)
Koradin, C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.; Knochel, P.
Synthesis of polyfunctional indoles and related heterocycles