to form a supramolecular structure via multiple hydrogen-bond
and p–p interactions. As shown in Fig. 5b and c, each picrate
acts as a hydrogen-bond acceptor to connect six ligands via 9
hydrogen-bonds, and each L acts as hydrogen-bond donor
and acceptor to connect six picrates and two other ligands via
13 hydrogen-bonds in which the D–A distances vary from
2.713 to 3.470 A and the corresponding D–HÁ Á ÁA angles are in
the range 114.8–169.91 (Table S2, ESIw), while relatively weak
C–HÁ Á ÁO interactions can not be ignored.20 It is noteworthy
that the two hydrogen-bonds between N1 of the pyridine
group and O1 of the hydrazone group and N2 of the hydra-
zone group and O8 of the picrate group are very strong21
owing to their short distance. These results implied that the
pyridine group and the hydrazone group of L were the key
sites for specific interaction with TNP, which was in good
12287–12292; (b) A. Rose, Z. Zhu, C. Madigan, T. M. Swager and
V. Bulovic, Nature, 2005, 434, 876–879; (c) V. Radhika, T. Proikas-
Cezanne, M. Jayaraman, D. Onesime, J. H. Ha and
D. N. Dhanasekaran, Nat. Chem. Biol., 2007, 3, 325–330; for a
review, see: (d) S. J. Toal and W. C. Trogler, J. Mater. Chem.,
2006, 16, 2871–2883.
7 (a) G. V. Zyryanov,M.A.PalaciosandP.Anzenbacher,Jr,Org.Lett.,
¨
2008, 10, 3681–3684; (b) E. Erc¸ ag, A. Uzer and R. Apak, Talanta,
2009, 78, 772–780; (c) C. Vijayakumar, G. Tobin, W. Schmitt,
M.-J. Kim and M. Takeuchi, Chem. Commun., 2010, 46, 874–876;
(d) Y. H. Lee, H. Liu, J. Y. Lee, S. H. Kim, S. K. Kim, J. L. Sessler,
Y. Kim and J. S. Kim, Chem.–Eur. J., 2010, 16, 5895–5901.
8 The known sensors are not specific for TNP: (a) H. Sohn,
R. M. Calhoun, M. J. Sailor and W. C. Trogler, Angew. Chem.,
¨
Int. Ed., 2001, 40, 2104–2105; (b) A. Uzer, E. Erc¸ ag and R. Apak,
Anal. Chim. Acta, 2004, 505, 83–93; (c) M. E. Germain and
M. J. Knapp, J. Am. Chem. Soc., 2008, 130, 5422–5423;
(d) E. S. Forzani, D. Lu, M. J. Leright, A. D. Aguilar, F. Tsow,
R. A. Iglesias, Q. Zhang, J. Lu, J. Li and N. Tao, J. Am. Chem.
Soc., 2009, 131, 1390–1391; (e) J. S. Park, F. Le Derf, C. M. Bejger,
V. M. Lynch, J. L. Sessler, K. A. Nielsen, C. Johnsen and
J. O. Jeppesen, Chem.–Eur. J., 2010, 16, 848–854.
1
agreement with the results of H NMR titration experiments
in solution. Three intermolecular face-to-face p–p stacking
interactions are also evident (Fig. 5c). The first one, between
two picrate rings, presents a pcentroid–pcentroid distance of 3.569 A
and a dihedral angle of 0.001. The second and the third
interactions, between the anthracene ring and pyridine ring
from different L, are the same and both have a pcentroid–pcentroid
distance of 3.640 A and a dihedral angle of 5.441. No p–p
stacking interactions between anthracene rings were observed
which indicated the origin of the prominent fluorescence
quenching. In addition, a powder X-ray diffraction study of
the precipitate was also conducted (Fig. S4, ESIw) and the
resulting experimental powder XRD pattern is in good agree-
ment with the corresponding simulated one of the crystal LÁ
TNP. The above results showed that there is an organized
self-assembly between L and TNP during the sensing process.
In summary, we report a specific, colorimetric and fluorescent
receptor (L) for TNP. As a general design strategy, structural
modifications of L may allow us to create further fluorescent
sensor candidates for TNP in the future.
9 J. Akhavan, The Chemistry of Explosives, Royal Society of
Chemistry, Cambridge, 2004.
10 J. F. Wyman, M. P. Serve, D. W. Hobson, L. H. Lee and
D. E. Uddin, J. Toxicol. Environ. Health, Part A, 1992, 37, 313–327.
11 The following references demonstrated sensing of TNP; however,
no experiments involving selectivity with other nitroaromatic
explosives were provided: (a) D. R. Shankaran, K. V. Gobi,
K. Matsumoto, T. Imato, K. Toko and N. Miura, Sens. Actuators,
B, 2004, 100, 450–454; (b) S.-Z. Tan, Y.-J. Hu, J.-W. Chen,
G.-L. Shen and R.-Q. Yu, Sens. Actuators, B, 2007, 124, 68–73;
(c) M. Laurenti, E. Lopez-Cabarcos, F. Garcıa-Blanco, B. Frick
´ ´
and J. Rubio-Retama, Langmuir, 2009, 25, 9579–9584.
12 (a) M. Dong, Y.-W. Wang and Y. Peng, Org. Lett., 2010, 12,
5310–5313; (b) T.-H. Ma, M. Dong, Y.-M. Dong, Y.-W. Wang
and Y. Peng, Chem.–Eur. J., 2010, 16, 10313–10318.
13 (a) S. Iwata, H. Matsuoka and K. Tanaka, J. Chem. Soc., Perkin
Trans. 1, 1997, 1357–1360; (b) H. Ihmels, A. Meiswinkel,
C. J. Mohrschladt, D. Otto, M. Waidelich, M. Towler, R. White,
M. Albrecht and A. Schnurpfeil, J. Org. Chem., 2005, 70, 3929–3938;
(c) K. Ghosh and G. Masanta, Supramol. Chem., 2005, 17, 331–334;
(d) B. C. Satishkumar, L. O. Brown, Y. Gao, C.-C. Wang,
H.-L. Wang and S. K. Doorn, Nat. Nanotechnol., 2007, 2,
560–564; (e) K. Ghosh, G. Masanta and A. P. Chattopadhyay,
J. Photochem. Photobiol., A, 2009, 203, 40–49.
This work was financially supported by the NSFC (No.
20802029 and 21001058) and the Fundamental Research
Funds for the Central Universities (lzujbky-2010-38).
14 (a) Receptor L exists as a mixture of E/Z (10 : 1) isomers in solution
as determined by the integration of the corresponding peaks in
1H NMR, see ESIw for details; (b) For a related discussion of
CQN double bond isomerization, see: K. Pihlaja, M. F. Simeonov
Notes and references
and F. Fulop, J. Org. Chem., 1997, 62, 5080–5088.
¨
¨
15 (a) P. K. Lekha and E. Prasad, Chem.–Eur. J., 2010, 16,
3699–3706; (b) G. Zhang, G. Yang, S. Wang, Q. Chen and
J. S. Ma, Chem.–Eur. J., 2007, 13, 3630–3635.
16 For a related pyridinium cation–p interaction sensor for fluorescent
detection of alkyl halides, see: W. Chen, S. A. Elfeky, Y. Nonne,
L. Male, K. Ahmed, C. Amiable, P. Axe, S. Yamada, T. D. James,
S. D. Bull and J. S. Fossey, Chem. Commun., 2011, 47, 253–255.
17 We thank one of the referees for drawing our attention to these
quantitative analytical experiments.
1 (a) D. J. Cram, Science, 1988, 240, 760–767; (b) J. M. Lehn,
Science, 2002, 295, 2400–2403; (c) E. V. Anslyn, J. Org. Chem.,
2007, 72, 687–699; (d) J. W. Steed and J. L. Atwood,
Supramolecular Chemistry, Wiley–VCH, Weinheim, 2009.
2 (a) T. D. James, K. R. A. S. Sandanayake and S. Shinkai, Nature,
1995, 374, 345–347; (b) Y. Ferrand, M. P. Crump and A. P. Davis,
Science, 2007, 318, 619–622; (c) B. C. Dickinson, C. Huynh and
C. J. Chang, J. Am. Chem. Soc., 2010, 132, 5906–5915;
(d) H. L. Liu, Q. Peng, Y.-D. Wu, D. Chen, X. L. Hou,
M. Sabat and L. Pu, Angew. Chem., Int. Ed., 2010, 49, 602–606.
3 (a) Y. Kubo, S. Maeda, S. Tokita and M. Kubo, Nature, 1996, 382,
522–524; (b) K. Tsubaki, D. Tanima, M. Nuruzzaman,
T. Kusumoto, K. Fuji and T. Kawabata, J. Org. Chem., 2005,
70, 4609–4616; (c) N. Laurieri, M. H. J. Crawford, A. Kawamura,
I. M. Westwood, J. Robinson, A. M. Fletcher, S. G. Davies, E. Sim
and A. J. Russell, J. Am. Chem. Soc., 2010, 132, 3238–3239.
4 (a) R. L. Woodfin, Trace Chemical Sensing of Explosives, John
Wiley & Sons, New Jersey, 2007; (b) M. E. Germain and
M. J. Knapp, Chem. Soc. Rev., 2009, 38, 2543–2555.
18 Crystal data for LÁTNP: C27H18N6O8, M = 554.47, monoclinic,
space group P21/n, a = 7.394(5), b = 23.675(16), c = 14.376(10) A,
V = 2493(3) A3, Z = 4, T = 296(2) K, 11651 reflections measured
(0.71 A resolution), 4404 unique (Rint = 0.0644), final R1
0.0584, wR2 = 0.1214 with intensity I > 2s(I).
=
19 For a similar transfer of proton (neutralization), see: Y. Zhang,
Y. Guo, Y.-H. Joo, D. A. Parrish and J. M. Shreeve, Chem.–Eur. J.,
2010, 16, 10778–10784.
20 (a) D. J. Sutor, Nature, 1962, 195, 68–69; (b) G. R. Desiraju and
T. Steiner, The Weak Hydrogen Bonds in Structural Chemistry and
Biology, Oxford University Press, Oxford, 1999.
21 Pu and co-workers also proposed that there should be strong
hydrogen bonding between basic nitrogen atoms of their host
and acidic protons of mandelic acid guest, see: H.-L. Liu,
X.-L. Hou and L. Pu, Angew. Chem., Int. Ed., 2009, 48, 382–385.
5 (a) A. Fainberg, Science, 1992, 255, 1531–1537; (b) A. M. Rouhi,
Chem. Eng. News, 1997, 75, 14–22; (c) A. W. Czarnik, Nature,
1998, 394, 417–418.
6 (a) L. Chen, D. W. McBranch, H.-L. Wang, R. Helgeson, F. Wudl
and D. G. Whitten, Proc. Natl. Acad. Sci. U. S. A., 1999, 96,
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 4505–4507 4507