J. Dash et al. / Tetrahedron Letters 52 (2011) 2246–2249
10. Dash, J.; Arseniyadis, S.; Cossy, J. Adv. Synth. Catal. 2007, 349, 152–156.
2249
corresponding tin species intermediate and directly used in the
palladium-catalysed Stille coupling with the 2-iodopyridine deriv-
ative 25 to afford the desired coupled product 26 in 61% yield.
In summary, we have prepared a key intermediate in the syn-
thesis of WS75624 B as well as an analogue of WS75624 A using
a convergent strategy based on a Stille coupling between a 2-iodo
pyridine and a 4-trimethyltin-disubstituted thiazole to link the
two heterocycles together, and a one-pot cross-metathesis/hydro-
genation sequence to introduce the hydroxyalkyl side chain.
Compound 14 is particularly interesting as deprotection of the
secondary hydroxyl group15d followed by the introduction of the
carboxylic acid moiety15c (via a Reissert–Henze reaction22) or any
other substituent should allow to complete the synthesis
WS75624 B and generate a library of potentially useful synthetic
analogues.
11. Gebauer, J.; Arseniyadis, S.; Cossy, J. Org. Lett. 2007, 9, 3425–3427.
12. Gebauer, J.; Arseniyadis, S.; Cossy, J. Eur. J. Org. Chem. 2008, 2701–2704.
13. Hoffman, T. J.; Kolleth, A.; Rigby, J. H.; Arseniyadis, S.; Cossy, J. Org. Lett. 2010,
12, 3348–3351.
14. For the total synthesis of WS75624 A, see: Bach, T.; Heuser, S. Synlett 2002,
2089–2091.
15. For the total synthesis of WS75624 B, see: (a) Patt, W. C.; Massa, M. A.
Tetrahedron Lett. 1997, 38, 1297–1300; (b) Massa, M. A.; Patt, W. C.; Ahn, K.;
Sisneros, A. M.; Herman, S. B.; Doherty, A. Bioorg. Med. Chem. Lett. 1998, 8,
2117–2122; (c) Huang, S.-T.; Gordon, D. M. Tetrahedron Lett. 1998, 39, 9335–
9338; (d) Stangeland, E. L.; Sammakia, T. J. Org. Chem. 2004, 69, 2381–2385.
16. (a) Trecourt, F.; Mallet, M.; Mongin, O.; Gervain, B.; Queguiner, G. Tetrahedron
1993, 37, 8373–8380; (b) Mongin, F.; Trecourt, F.; Mongin, O.; Queguiner, G.
Tetrahedron 2002, 58, 309–314.
17. Olefins 15 and 17 were prepared in respectively one and two steps starting
from commercially available hexen-5-one (20). The latter was first subjected to
methylmagnesium bromide [Et2O, 0 °C, 93%] to afford 15 which was then
converted to the corresponding triethylsilyl ether [TESOTf, 2,6-lutidine, CH2Cl2,
À78 °C, 96%].
18. Olefin 17 was prepared starting from commercially available (R)-propylene
oxide (21) according to a reported procedure, see: Yu, M.; Alonso-Galicia, M.;
Sun, C.-W.; Roman, R. J.; Ono, N.; Hirano, H.; Ishimoto, T.; Reddy, Y. K.;
Katipally, K. R.; Reddy, K. M.; Gopal, V. R.; Yu, J.; Takhi, M.; Falck, J. R. Bioorg.
Med. Chem. 2003, 11, 2803–2821. Olefin 17 was then converted to the
corresponding triethylsilyl ether 18 [TIPSOTf, 2,6-lutidine, CH2Cl2, À78 °C,
95%].
Acknowledgements
The authors would like to thank the Ministère Français des Af-
faires Etrangères for financial support to B.M.
19. 4-Bromo-2-vinyl-thiazole 19 was prepared in high yield starting from 2,4-
dibromo thiazole 22, see: Colaou, K. C.; King, N. P.; Finlay, M. R. V.; He, Y.;
Roschangar, S.; Vourloumis, D.; Vallberg, H.; Sarabia, F.; Ninkovic, S.; Sarabia,
F.; Hepworth, D. Bioorg. Med. Chem. 1999, 7, 665–697.
References and notes
1. (a) Höfle, G.; Bedorf, N.; Steinmetz, H.; Schomburg, D.; Gerth, K.; Reichenbach,
H. Angew. Chem., Int. Ed. 1996, 35, 1567–1569; (b) Altmann, K.-H.; Pfeiffer, B.;
Arseniyadis, S.; Pratt, B. A.; Nicolaou, K. C. ChemMedChem 2007, 4, 397–423.
2. Böhlendorf, B.; Herrmann, M.; Hecht, H. J.; Sasse, F.; Forche, E.; Kunze, B.;
Reichenbach, H.; Höfle, G. Eur. J. Org. Chem. 1999, 10, 2601–2608.
3. (a) Pagano, J. F.; Weinstein, M. J.; Stout, H. A.; Donovick, R. Antibiot. Ann. 1955–
1956, 554–559; (b) Vandeputte, J.; Dutcher, J. D. Antibiot. Ann. 1955–1956,
560–561; (c) Steinberg, B. A.; Jambor, W. P.; Suydam, L. O. Antibiot. Ann. 1955–
1956, 562–565; (d) Bagley, M. C.; Dale, J. W.; Merritt, E. A.; Xiong, X. Chem. Rev.
2005, 105, 685–714.
4. Fuller, A. T. Nature 1955, 175, 721–722.
5. Tsurumi, Y.; Ueda, H.; Hayashi, K.; Takase, S.; Nishikawa, M.; Kiyoto, S.;
Okuhara, M. J. Antibiot. 1995, 48, 1066–1072.
6. Yoshimura, S.; Tsurumi, Y.; Takase, S.; Okuhara, M. J. Antibiot. 1995, 48, 1073–
1075.
7. Moïse, J.; Arseniyadis, S.; Cossy, J. Org. Lett. 2007, 9, 1695–1698.
8. Moïse, J.; Sonawane, R. P.; Corsi, C.; Wendeborn, S. V.; Arseniyadis, S.; Cossy, J.
Synlett 2008, 2617–2620.
20. General procedure for the one-pot Stille coupling/cross-metathesis: A mixture of
freshly flame dried LiCl (4 equiv), Pd(PPh3)4 (4 mol %), 2,4-bistriflate 10
(1 mmol), vinyltributyltin (1 mmol) in 5 mL of toluene was heated at 80 °C
for 8 h. After complete conversion of the starting material (reaction monitored
by tlc analysis), the reaction mixture was cooled before the terminal olefin
(1.5 equiv) was added along with the ruthenium carbene catalyst [Ru]-I
(10 mol %). The reaction mixture was then stirred at 40 °C for an additional
12 h and then cooled back to rt and concentrated in under reduced pressure.
Filtration of the reaction mixture followed by purification using flash
chromatography on silica gel afforded the corresponding disubstituted olefin.
21. It is worth pointing out that the use of RhCl(PPh3)3 in a THF/t-BuOH (1:1)
mixture or PtO2 in either AcOEt or ethanol led to the recovery of the starting
material, while the use of Pd/C in an EtOH/EtOAc (1:1) mixture afforded the
desired product along with a non negligible amount of a new compound which
lost the triflate moiety.
22. (a) Reissert, A. Ber. Dtsch. Chem. Ges. 1905, 38, 1603–1614; (b) Reissert, A. Ber.
Dtsch. Chem. Ges. 1905, 38, 3415–3435.
9. Hoffman, T. J.; Rigby, J. H.; Arseniyadis, S.; Cossy, J. J. Org. Chem. 2008, 73, 2400–
2403.