296
A.G. Ginzburg et al. / Inorganica Chimica Acta 370 (2011) 292–296
Table 2
absorption correction, and SHELXTL [26] for space group and struc-
ture determination, refinements, graphics, and structure reporting.
The structures were solved by direct methods and refined by the
full matrix least-squares technique against F2 with the anisotropic
thermal parameters for all non-hydrogen atoms. In the crystal 2c in
independent part molecule A, one of the two independent cations
(HNðEtÞðPriÞ2þ) is disordered over two positions with 0.75/0.25
occupancies. The hydrogen atoms at the N and P atoms in two
compounds 2a and 2c were localized from different Fourier syn-
thesis and involved in refining in isotropic approximation. All other
hydrogen atoms of 2a and 2c were placed geometrically and re-
fined in the riding motion approximation. The principal experi-
mental and crystallographic parameters of 2a and 2c are
presented in Table 2.
Crystal data, data collection and structure refinement parameters for 2a and 2c.
Complex
2a
2c
Formula
(C19H13MnO4P)ꢀ(C4H12N)+ (C19H13MnO4P)ꢀ(C8H20N)+
465.35
0.30 ꢂ 0.13 ꢂ 0.12
monoclinic
P21/n
Formula weight
Dimension (mm)
Crystal system
Space group
Unit cell dimensions
a (Å)
521.45
0.35 ꢂ 0.28 ꢂ 0.15
monoclinic
P21/c
10.6877(4)
11.0570(5)
19.2435(8)
90.00
94.6210(10)
90.00
2266.69
4
1.364
12.076(7)
12.387(7)
34.9402(19)
90.00
93.360(10)
90.00
5217.6
8
1.328
b (Å)
c (Å)
a
(°)
b (°)
c
(°)
V (Å3)
Z
qcalc (g cmꢀ3
)
Acknowledgements
Linear absorption
6.81
6.00
(l
) (cmꢀ1
)
This work has been done under financial support of the Russian
Foundation for Basic Research (Projects 08-03-00169, 11-03-00262
and 08-03-00631).
Tmin/Tmax
2hmax (°)
No. unique refl.
(Rint
No. observed refl.
(I > 2 (I))
0.821/0.925
58
6008(0.0304)
0.81/0.908
54
11,326(0.0531)
)
4985
8378
Appendix A. Supplementary material
r
No. parameters
285
677
R1 (on F for
0.0323
0.0513
CCDC 764036 and 764037 contains the supplementary crystal-
lographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
ated with this article can be found, in the online version, at
observed refl.)a
wR2 (on F2 for all
refl.)b
0.0828
1.036
0.1184
1.014
Goodness-of-fit
(GOF)on F2
P
P
a
R1
=
||Fo| ꢀ |Fc||/ |Fo|.
ꢄ
ꢂ
ꢃ
ꢅ
1
ꢀ
ꢁ
2
P
P
2
F2o ꢀ F2c
=
wðF2oÞ
.
b
wR2
¼
w
References
[1] D. Carmichael, G. Goldet, J. Klankermayer, L. Ricard, N. Seeboth, M. Stankevic,
Chem. Eur. J. 13 (2007) 5492.
two C-atoms in b-positions to P; 64.12, d, J(13C–31P) = 90 Hz, two C-
[2] D. Carmichael, L. Ricard, N. Seeboth, Organometallics 26 (2007) 2964.
[3] Y. Cabon, D. Carmichael, K. Forissier, F. Mathey, L. Ricard, N. Seeboth,
Organometallics 26 (2007) 5468.
atoms in
(CH2Cl2):
a
m
-positions to P; 45.70, N–CH2; 9.11, CH3. IR-spectra
(CO) 1890 (E-mode), 1980 cmꢀ1 (A1-mode).IR-spectra
in solid state (Nujol): 1870 (E-mode), 1965 cmꢀ1 (A1-mode).
Complex 2c: From 37.4 mg (0.1 mmol) 1 and 0.8 ml of N(Et)(i-
Pr)2 was obtained 35 mg (66%) of 2c. Anal. Calc. for C27H33MnNPO4:
C, 62.19; H, 6.38; N, 2.69. Found: C, 62.21; H, 6.38; N, 2.61%.
1H{31P}NMR (CD2Cl2), d ppm: 7.94, broad s, 1H, P–H; 7.38, 7.23,
7.06, 10H, o, m, p C6H5; 5.44, d, 2H, 3J(H3,4–P) = 14 Hz, H(3,4);
3.18, 2H, N–CH; 2.69, 2H, N–CH2; 1.10, broad s, 15H, all Me-groups.
[4] F. Mathey, J. Organomet. Chem. 646 (2002) 15.
[5] D. Carmichael, F. Mathey, Top. Curr. Chem. 220 (2002) 27.
[6] F. Mathey, Angew. Chem., Int. Ed. 42 (2003) 1578.
[7] A.G. Ginzburg, Usp. Khim. 78 (3) (2009) 211 (Russ. Chem. Rev. 78 (3) (2009)
211).
[8] F. Mathey, A. Mitschler, R. Weiss, J. Am. Chem. Soc. 100 (1978) 5748.
[9] C. Guimon, G. Pfister-Guilloso, F. Mathey, Nouv. J. Chim. 3 (1979) 725.
[10] B. Deschamp, P. Toullec, L. Ricard, F. Mathey, J. Organomet. Chem. 634 (2001)
131.
[11] B. Deschamp, L. Ricard, F. Mathey, J. Organomet. Chem. 689 (2004) 4647.
[12] L. Brunet, F. Mercier, L. Ricard, F. Mathey, Angew. Chem., Int. Ed. 33 (1994) 742.
[13] A.G. Ginzburg, V.V. Bashilov, F.M. Dolgushin, A.F. Smol’yakov, A.S. Peregudov,
V.I. Sokolov, J. Organomet. Chem. 694 (2009) 72.
[14] V.V. Bashilov, A.G. Ginzburg, A.F. Smol’yakov, F.M. Dolgushin, P.V. Petrovskii,
V.I. Sokolov, Izv. Akad. Nauk Ser. Khim. (2010) 476 (Russ. Chem. Bull., Int. Ed.
59 (2010) 486).
31P NMR (CD2Cl2):
d
ꢀ4.95 (dt, 1J(P–H) = 536 and 3J(P–
H
3.4) = 14 Hz). 13C NMR (CD2Cl2): d 228.26, Mn(CO)3; 139.94, key
C-atoms of C6H5; 128.49, 125.31 and 125.25, 124.52, C-atoms of
m-, two types of o-, p-positions C6H5; 79.13,d, J(13C–31P) = 21 Hz,
two C-atoms in b-positions to P; 65.10, d, J(13C–31P) = 87 Hz, two
C-atoms in
CH. IR (CH2Cl2):
a-positions to P; 41.69, N–CH2; 17.72, CH3; 12.36, N–
[15] A. Michaelis, L. Gleichmann, Chem. Ber. 15 (1882) 801.
[16] A. Kirby, S.D. Warren, The Organic Chemistry of Phosphorus, Elsevier,
Amsterdam, London, New York, 1967.
[17] S.S. Batsanov, Zh. Neorg. Chim. 36 (1991) 3015 (Russ. J. Inorg. Chem. 36 (1991)
1694).
m
(CO) 1890 (E-mode) and 1980 cmꢀ1 (A1-mode).
IR-spectra in solid state (Nujol): 1885 (E-mode), 1970 cmꢀ1 (A1-
mode).
[18] B. Cordero, V. Gomez, A.E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F.
Barragan, S. Alvares, J. Chem. Soc., Dalton Trans. (2008) 2832.
[19] A.G. Ginzburg, A.S. Batsanov, Yu.T. Struchkov, J. Organomet. Chem. USSR 4
(1991) 417.
[20] P. Toullec, L. Ricard, F. Mathey, Organometallics 22 (2003) 1340.
[21] P. Toullec, L. Ricard, F. Mathey, Organometallics 21 (2002) 2635.
[22] A. Decken, F. Bottomley, B.E. Wilkins, E.D. Gill, Organometallics 23 (2004)
3683.
[23] E. Linder, A. Rau, S. Hoehne, J. Organomet. Chem. 218 (1981) 41.
[24] A. Breque, F. Mathey, C. Santini, J. Organomet. Chem. 165 (1979) 129.
[25] APEX II Software Package, Bruker AXS Inc., 5465, East Cheryl Parkway, Madison,
WI 5317, 2005.
[26] SHELXTL v. 5.10, Structure Determination Software Suite, Bruker AXS, Madison,
Wisconsin, USA, 1998.
4.3. X-ray crystal data for 2a and 2c
Single crystals of the complexes 2a and 2c were obtained by
slow diffusion of pentane into the solutions of the complexes in
CH2Cl2 or benzene in NMR-tubes at room temperature.
The crystal X-ray diffraction experiments for compound 2a and
2c were carried out with a Bruker SMART
APEX II diffractometer
(graphite monochromated Mo K radiation, k = 0.71073 A, x-scan
a
technique, T = 100 K). The APEX II software [25] was used for col-
lecting frames of data, indexing reflections, determination of lattice
constants, integration of intensities of reflections, scaling and