Inorganic Chemistry
ARTICLE
Rev. 2010, 39, 189–227. (c) Ma, Y.; Wang, Y. Coord. Chem. Rev. 2010,
254, 972–990.
5, 561–567. (d) Albizu, L.; Cottet, M.; Kralikova, M.; Stoev, S.; Seyer, R.;
Brabet, I.; Roux, T.; Bazin, H.; Bourrier, E.; Lamarque, L.; Breton, C.;
Rives, M.-L.; Newman, E.; Javitch, J.; Trinquet, E.; Manning, M.; Pin
J.-P.; Mouillac, B.; Durroux, T. Nat. Chem. Biol. 2010, 6, 587–594.
(15) For selected examples, see: (a) Takalo, H.; Hemmil€a; Sutela,
T.; Latva, M. Helv. Chim. Acta 1996, 79, 789–801. (b) Chatterton, N.;
Bretonniꢀere, Y.; Pꢁecaut, J.; Mazzanti, M. Angew. Chem., Int. Ed. 2005,
44, 7595–7598. (c) Gateau, C.; Mazzanti, M.; Pꢁecaut, J.; Dunand, F. A.;
Helm, L. Dalton Trans. 2003, 2428–2433. (d) Nocton, G.; Nonat, A.;
Gateau, C.; Mazzanti, M. Helv. Chim. Acta 2009, 92, 2257–2273.
(e) Mato-Iglesias, M.; Roca-Sabio, A.; Palinkas, Z.; Esteban-Gomez,
D.; Platas-Iglesias, C.; Toth, E.; De Blas, A.; Rodriguez-Blas, T. Inorg.
Chem. 2008, 47, 7840–7851. (f) Roca-Sabio, A.; Mato-Iglesias, M.;
Esteban-Gomez, D.;Toth, E.;DeBlas, A.;Platas-Iglesias, C.; Rodriguez-Blas,
T. J. Am. Chem. Soc. 2009, 131, 3331–3341. (g) Roca-Sabio, A.;
Mato-Iglesias, M.; Esteban-Gomez, D.; De Blas, A.; Rodriguez-Blas,
T.; Platas-Iglesias, C. Dalton Trans. 2011, 40, 384–392.
(16) (a) Huang, L.; Quada, J. C., Jr.; Lown, J. W. Bioconjugate Chem.
1995, 6, 21–33. (b) Storr, T.; Cameron, B. R.; Gossage, R. A.; Yee, H.; Skerlj,
R. T.; Darkes, M. C.;Fricker, S. P.;Bridger, G. J.;Davies, N. A.; Wilson, M. T.;
Maresca, K. P.; Zubieta, J. Eur. J. Inorg. Chem. 2005, 13, 2685–2697.
(17) Newkome, G. R.; Pappalardo, S.; Gupta, V. K.; Fronczek, F. R.
J. Org. Chem. 1983, 48, 4848–4851.
(18) Sꢁenꢁechal-David, K.; Hemeryck, A.; Tancrez, N.; Toupet, L.;
Williams, J. A. G.; Ledoux, I.; Zyss, J.; Boucekkine, A.; Guꢁegan, J.-P.;
Le Bozec, H.; Maury, O. J. Am. Chem. Soc. 2006, 128, 12243–12255.
(19) Wehavecheckedthattheselongerbondlengthsarenot due toour
calculation method. Indeed, using the same simulation parameters, the opti-
mized geometry of Lu(tpatcn) fits well with the X-ray diffraction data.15c
(20) D’Alꢁeo, A.; Picot, A.; Beeby, A.; Williams, J. A. G.; Le Guennic,
B.; Andraud, C.; Maury, O. Inorg. Chem. 2008, 47, 10258–10268.
(21) (a) Werts, M. H. V.; Duin, M. A.; Hofstraat, J. W.; Verhoeven,
J. W. Chem. Commun. 1999, 799–800. (b) Yang, C.; Fu, L.-M.; Wang, Y.;
Zhang, J.-P.; Wong, W.-T.; Ai, X.-C.; Qiao, Y.-F.; Zou, B.-S.; Gui, L.-L.
Angew. Chem., Int. Ed. 2004, 43, 5010–5013.
(22) (a) Sabbatini, N.; Guardigli, M.; Manet, I.; Bolletta, F.; Ziessel,
R. Inorg. Chem. 1994, 33, 955–959. (b) Havas, F.; Leygue, N.; Danel, M.;
Mestre, B.; Galaup, C.; Picard, C. Tetrahedron 2009, 65, 7673ꢀ7686 and
references cited therein.
(23) (a) Supkowski, R. M.; Horrocks, W. D. Inorg. Chim. Acta 2002,
340, 44. (b) Beeby, A.; Clarkson, I. M.; Dickins, R. S.; Faulkner, S.;
Parker, D.; Royle, L.; de Sousa, A. S.; Williams, J. A. G.; Woods, M.
J. Chem. Soc., Perkin Trans. 2 1999, 493.
(24) B€unzli, J.-C. G.; Eliseeva, S. V . Lanthanide Luminescence: Photo-
physical, Analytical and Biological Aspects; Springer-Verlag: Berlin, 2010;
published on the web July 15, 2010, DOI 10.1007/4243_2010_3.
(25) For selected examples, see: (a) Zucchi, G.; Scopelliti, R.; Pittet,
P.-A.; B€unzli, J.-C. G.; Rogers, R. D. J. Chem. Soc., Dalton Trans.
1999, 931–938. (b) Zucchi, G.; Scopelliti, R.; B€unzli, J.-C. G. J. Chem.
Soc., Dalton Trans. 2001, 1975–1985. (c) Kang, J. G.; Hong, J. P.; Yoon,
S. K.; Bae, J. H.; Kim, Y. D. J. Alloys Compd. 2002, 339, 248–254.
(d) Samuel, A. P. S.; Moore, E. G.; Melchior, M.; Xu, J.; Raymond, K. N.
Inorg. Chem. 2008, 47, 7535–7544.
(2) (a) D’Alꢁeo, A.; Pompidor, G.; Elena, B.; Vicat, J.; Baldeck, P. L.;
Toupet, L.; Kahn, R.; Andraud, C.; Maury, O. ChemPhysChem 2007,
8, 2125–2132. (b) Picot, A.; D’Alꢁeo, A.; Baldeck, P. L.; Grichine, A.;
Duperray, A.; Andraud, C.; Maury, O. J. Am. Chem. Soc. 2008,
130, 1532–1533. (c) Law, G. L.; Wong, K.-L.; Man, C. W.-Y.; Wong,
W.-T.; Tsao, S.-W.; Lam, M. H.-W.; Lam, P. K.-S. J. Am. Chem. Soc. 2008,
130, 3714–3715. (d) Kielar, F.; Congreve, A.; Law, G.-L.; New, E. J.;
Parker, D.; Wong, L.-L.; Castreno, P.; De Mendoza, J. Chem. Commun.
2008, 2435–2437. (e) Kielar, F.; Law, G.-L.; New, E. J.; Parker, D. Org.
Biomol. Chem. 2008, 6, 2256–2258. (f) Law, G.-L.; Wong, K.-L.; Man, C.
W.-Y.; Tsao, S.-W.; Wong, W.-T. J. Biophoton. 2009, 2, 718–724. (g)
Kadjane, P.; Starck, M.; Camerel, F.; Hill, D.; Hildebrandt, N.; Ziessel,
R.; Charbonniere, L. J. Inorg. Chem. 2009, 48, 4601–4603. (h) Eliseeva,
S. V.; Aub€ock, G.; van Mourik, F.; Cannizzo, A.; Song, B.; Deiters, E.;
Chauvin, A.-S.; Chergui, M.; B€unzli, J.-C. G. J. Phys. Chem. B 2010,
114, 2932–2937. (i) Shao, G.; Han, R.; Ma, Y.; Tang, M.; Xue, F.; Sha, Y.;
Wang, Y. Chem.—Eur. J. 2010, 16, 8647–8651.
(3) (a) Kim, H. M.; Cho, B. R. Acc. Chem. Res. 2009, 42, 863–872.
(b) He, G. S.; Tan, L.-S.; Zheng, Q.; Prasad, P. N. Chem. Rev. 2008,
108, 1245–1330. (c) Yuste, R. Nat. Methods 2005, 2, 902–904. (d)
Mertz, J. Curr. Opin. Neurobiol. 2004, 14, 610–616. (e) Campagnola,
P. J.; Loew, L. M. Nat. Biotechnol. 2003, 21, 1356–1360. (f) Zipfel, W. R.;
Williams, R. M.; Webb, W. W. Nat. Biotechnol. 2003, 21, 1369–1377.
(4) (a) Moore, E. G.; Samuel, A. P. S.; Raymond, K. N. Acc. Chem.
Res. 2009, 42, 542–552. (b) B€unzli, J.-C. G.; Comby, S.; Chauvin, A.-S.;
Vandevyver, C. D. B. J. Rare Earths 2007, 25, 257–274. (c) Pandya, S.;
Yu, J.; Parker, D. Dalton Trans. 2006, 2757–2766. (d) B€unzli, J.-C. G.
Acc. Chem. Res. 2006, 39, 53–61. (e) Gunlaugsson, T.; Leonard, J. P.
Chem. Commun. 2005, 3114–3131. (f) Faulkner, S.; Pope, S. J. A.;
Burton-Pye, B. P. Appl. Spectrosc. Rev. 2004, 39, 1–35. (g) Parker, D.
Chem. Soc. Rev. 2004, 33, 156–165. (h) B€unzli, J.-C. G.; Piguet, C. Chem.
Rev. 2002, 102, 1897–1928. (i) Parker, D.; Dickins, R. S.; Puschmann,
H.; Crossland, C.; Howard, J. A. K. Chem. Rev. 2002, 102, 1977–2010.
(5) Piszczek, G.; Maliwal, B. P.; Gryczynski, I.; Dattelbaum, J.;
Lakowicz, J. R. J. Fluoresc. 2001, 11, 101–107.
(6) Werts, M. H. V.; Nerambourg, N.; Pꢁelꢁegry, D.; Le Grand, Y.;
Blanchard-Desce, M. Photochem. Photobiol. Sci. 2005, 4, 531–538.
(7) (a) Fu, L.-M.; Wen, X.-F.; Ai, X.-C.; Sun, Y.; Wu, Y.-S.; Zhang
J.-P.; Wang, Y. Angew. Chem., Int. Ed. 2005, 44, 747–750. (b) Hao, R.; Li,
M.; Wang, Y.; Zhang, J.; Ma, Y.; Fu, L.; Wen, X.; Wu, Y.; Ai, X.; Zhang, S.;
Wie, Y. Adv. Funct. Mater. 2007, 17, 3663–3669. (c) Xue, F.; Ma, Y.; Fu,
L.; Hao, R.; Shao, G.; Tang, M.; Zhang, J.; Wang, Y. Phys. Chem. Chem.
Phys. 2010, 12, 3195–3202.
(8) Picot, A.; Malvolti, F.; Le Guennic, B.; Baldeck, P. L.; Williams,
J. A. G.; Andraud, C.; Maury, O. Inorg. Chem. 2007, 46, 2659–2665.
(9) D’Alꢁeo, A.; Picot, A.; Baldeck, P. L.; Andraud, C.; Maury, O.
Inorg. Chem. 2008, 47, 10269–10279.
(10) Chauvin, A.-S.; Gumy, F.; Imbert, D.; B€unzli, J.-C. G. Spectrosc.
Lett. 2004, 37, 517–532.Erratum, 2007, 40, 193.
(11) D’Alꢁeo, A.; Allali, M.; Picot, A.; Baldeck, P. L.; Toupet, L.;
Andraud, C.; Maury, O. C. R. Chim. 2010, 13, 681–690.
(12) (a) Alpha, B.; Lehn, J.-M.; Mathis, G. Angew. Chem., Int. Ed.
1987, 26, 266–267. (b) Sabbatini, N.; Guardigli, M.; Lehn, J.-M. Coord.
Chem. Rev. 1993, 123, 201–228.
(13) (a) Mathis, G. Clin. Chem. 1993, 39, 1953–1959. (b) Mathis, G.
Clin. Chem. 1995, 41, 1391–1397. (c) Mathis, G. J. Biomol. Screen. 1999,
4, 309–314.
(14) For selected recent examples, see: (a) Trinquet, E.; Fink, M.;
Bazin, H.; Grillet, F.; Maurin, F.; Bourrier, E.; Ansanay, H.; Leroy, C.;
Michaud, A.; Durroux, T.; Maurel, D.; Malhaire, F.; Goudet, C.; Pin
J.-P.; Naval, M.; Hernout, O.; Chretien, F.; Chapleur, Y.; Mathis, G.
Anal. Biochem. 2006, 358, 126–135. (b) Albizu, L.; Teppaz, G.; Seyer, R.;
Bazin, H.; Ansanay, H.; Manning, M.; Mouillac, B.; Durroux, T. J. Med.
Chem. 2007, 50, 4976–4985. (c) Maurel, D.; Comps-Agrar, L.; Brock,
C.; Rives, M. L.; Bourrier, E.; Ayoub, M. A.; Bazin, H.; Tinel, N.;
Durroux, T.; Prꢁezeau, L.; Trinquet, E.; Pin, J.-P. Nat. Methods 2008,
(26) Note that similar results are obtained using MeTHF at low
temperature (see the Supporting Information, Figure S3).
(27) This conclusion is based on the hypothesis of a sensitization
process mediated by an antenna effect from a charge-transfer excited
state, as was already shown for related complexes.20 Alternatively, given
the electronic structure of L2, a photoinduced electron-transfer process
could also be operative and would be consistent with the solvent and
temperature dependence of the luminescence intensity.
(28) Werts, M. H. V.; Jukes, R. T. F.; Verhoeven, J. W. Phys. Chem.
Chem. Phys. 2002, 4, 1542.
(29) Beeby, A.; Bushby, L. M.; Maffeo, D.; Williams, J. A. G. J. Chem.
Soc., Dalton Trans. 2002, 48–54.
(30) Details of the calculations can be found in several articles. See,
for example, refs 20 and 28.
(31) Xu, C.; Webb, W. W. J. Opt. Soc. Am. B 1996, 13, 481–491.
4998
dx.doi.org/10.1021/ic200227b |Inorg. Chem. 2011, 50, 4987–4999