Running title
Chin. J. Chem.
Zhong, Y.; Zhou, T.; Zhang, Z.; Chang, R. Copper-Catalyzed Transfer Hy-
drogenation of N-Heteroaromatics with an Oxazaborolidine Complex.
ACS Omega. 2019, 4, 8487-8494.
Wang, D.; Astruc, D. The Golden Age of Transfer Hydrogenation. Chem.
Rev. 2015, 115, 6621-6686.
Xuan, Q.; Song, Q. Diboron-Assisted Palladium-Catalyzed Transfer Hy-
drogenation of N-Heteroaromatics with Water as Hydrogen Donor and
Solvent. Org. Lett. 2016, 18, 4250-4253.
Zou, M. F.; Keck, T. M.; Kumar, V.; Donthamsetti, P.; Michino, M.;
Burzynski, C.; Schweppe, C.; Bonifazi, A.; Free, R. B.; Sibley, D. R.; Jan-
owsky, A.; Shi, L.; Javitch, J. A.; Newman, A. M. Novel Analogues of (R)-
5-(Methylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one
(Sumanirole) Provide Clues to Dopamine D2/D3 Receptor Agonist Se-
lectivity. J. Med. Chem. 2016, 59, 2973-2988.
Alonso, C.; Fuertes, M.; Gonzalez, M.; Rubiales, G.; Tesauro, C.; Knud-
sen, B. R.; Palacios, F. Synthesis and biological evaluation of in-
deno[1,5]naphthyridines as topoisomerase I (TopI) inhibitors with an-
tiproliferative activity. Eur. J. Med. Chem. 2016, 115, 179-190.
(a) Beydoun, K.; Ghattas, G.; Thenert, K.; Klankermayer, J.; Leitner, W.
Ruthenium-Catalyzed Reductive Methylation of Imines Using Carbon
Dioxide and Molecular Hydrogen. Angew. Chem. Int. Ed. 2014, 53,
11010-11014. (b) Blondiaux, E.; Pouessel, J.; Cantat, T. Carbon Dioxide
Reduction to Methylamines under Metal-Free Conditions. Angew.
Chem. Int. Ed. 2014, 53, 12186-12190. (c) Wei, Y.; Xuan, Q.; Zhou, Y.;
Song, Q. Reductive N-alkylation of primary and secondary amines us-
ing carboxylic acids and borazane under mild conditions. Org. Chem.
Front., 2018, 5, 3510-3514. (d) Sorribes, I.; Cabrero-Antonino, R. J.; Vi-
cent, C.; Junge, K.; Beller, M. Catalytic N-Alkylation of Amines Using
Carboxylic Acids and Molecular Hydrogen. J. Am. Chem. Soc. 2015, 137,
13580-13587.
(a) Jiang, C.; Blacque, O.; Fox, M.; Frech, V. M.; Berke, H. Activation of
Terminal Alkynes by Frustrated Lewis Pairs. Organometallics., 2010, 29,
125-133. (b) Jiang, Y.; Berk, H. Dehydrocoupling of dimethylamine-bo-
rane catalysed by rhenium complexes and its application in olefin
transfer-hydrogenations. Chem. Commun., 2007, 3571-3573.
(a) Rossin, A.; Peruzzini, M. Ammonia–Borane and Amine–Borane De-
hydrogenation Mediated by Complex Metal Hydrides. Chem. Rev.,
2016, 116, 8848-8872. (b) Korytiaková, E.; Thiel, N. O.; Pape, F.;
Teichert, J. F. Copper(I)-catalysed transfer hydrogenations with ammo-
nia borane. Chem. Commun., 2017, 53, 732-735. (c) Rossin, A.; Pe-
ruzzini, M. Stereoselective Alkyne Hydrohalogenation by Trapping of
Transfer Hydrogenation Intermediates. Org. Lett., 2018, 20, 4926-4929.
(d) Zhong, Y.; Zhou, T.; Zhang, Z.; Chang, R. Copper-Catalyzed Transfer
Hydrogenation of N-Heteroaromatics with an Oxazaborolidine Com-
plex. ACS Omega, 2019, 4, 8487-8794.(e) Hamilton, C. W.; Baker, R. T.;
Staubitz, A.; Manners, I. B–N compounds for chemical hydro-
genstorage. Chem. Soc. Rev., 2009, 38, 279-293.
(a) Deutsch, C.; Krause, N. Cu-H-Catalyzed Reactions. Chem. Rev. 2008,
108, 2916-2927. (b) Jordan, A. J.; Lalic, G.; Sadighi, J. P. Coinage Metal
Hydrides: Synthesis, Characterization, and Reactivity. Chem. Rev. 2016,
116, 8318-8372. (c) Pirnot, M. T.; Wang, Y.; Buchwald, S. L. Copper Hy-
dride Catalyzed Hydroamination of Alkenes and Alkynes. An-
gew.Chem.Int. Ed. 2016, 55, 48-57.
(a) Yang, X.; Zhao, L.; Fox, T.; Wang, Z.; Berk, H. Transfer Hydrogenation
of Imines with Ammonia-Borane: A Concerted Double-Hydrogen-
Transfer Reaction. Angew. Chem. Int. Ed. 2010, 49, 2058-2062. (b)
Yang, X.; Fox, T.; Berke, H. Facile metal free regioselective transfer hy-
drogenation of polarized olefins with ammonia borane. Chem. Com-
mun., 2011, 47, 2053-2055. (c) Chong, C. C.; Hirao, H.; Kinjo, R. A Con-
certed Transfer Hydrogenolysis: 1,3,2‐ Diazaphospholene-Catalyzed
Hydrogenation of N-N Bond with Ammonia–Borane. Angew. Chem. Int.
Ed. 2014, 53, 3342-3346.
Xia, Y.; Sun, X.; Zhang, L.; Luo, K.; Wu, L. Metal-Free Hydrogen Atom
Transfer from Water: Expeditious Hydrogenation of N-Heterocycles
Mediated by Diboronic Acid. Chem. Eur. J. 2016, 22, 17151-17155.
(a) Ai, W.; Zhong, R.; Liu, X.; Liu, Q. Hydride Transfer Reactions Catalyzed
by Cobalt Complexes. Chem. Rev. 2019, 119, 2876-2953. (b) Meng, W.;
Feng, X.; Du, H. Frustrated Lewis Pairs Catalyzed Asymmetric Metal-
Free Hydrogenations and Hydrosilylations. Acc. Chem. Res. 2018, 51,
191-201. (c) Hamilton, C. W.; Baker, R.; Staubitzc, A.; Manners, I. B. B–
N compounds for chemical hydrogenstorage. Chem. Soc. Rev., 2009,
38, 279-293. (d) Zhou, Q.; Meng, W.; Yang, J.; Du, H. A Continuously
Regenerable Chiral Ammonia Borane for Asymmetric Transfer Hydro-
genations. Angew. Chem. Int. Ed. 2018, 57, 12111-12115. (e) Li, S.;
Meng, W.; Du, H. Asymmetric Transfer Hydrogenations of 2,3-Disub-
stituted Quinoxalines with Ammonia Borane. Org. Lett. 2017, 19, 2604-
2606. (f) Li, S.; Li, G.; Meng, W.; Du, H. A Frustrated Lewis Pair Cata-
lyzed Asymmetric Transfer Hydrogenation of Imines Using Ammonia
Borane. J. Am. Chem. Soc. 2016, 138, 12956-12962. (g) Fu, S.; Chen, N.;
Liu, X.; Shao, Z.; Luo, S.; Liu, Q. Ligand-Controlled Cobalt-Catalyzed
Transfer Hydrogenation of Alkynes: Stereodivergent Synthesis of Z-
and E-Alkenes. J. Am. Chem. Soc. 2016, 138, 8588-8594. (h) Wang, Y.;
Zhu, L.; Shao, Z.; Li, G.; Lan, Y.; Liu, Q. Unmasking the Ligand Effect in
Manganese-Catalyzed Hydrogenation: Mechanistic Insight and Cata-
lytic Application. J. Am. Chem. Soc. 2019, 141, 17337-17349. (i) Lau, S.;
Gasperini, D.; Webster, R. L. Amine–Boranes as Transfer Hydrogena-
tion and Hydrogenation Reagents: A Mechanistic Perspective. Angew.
Chem. Int. Ed. 2021, 60, 2-25. (j) Das, M.; Kaicharla, T.; Teichert, J. F.
Stereoselective Alkyne Hydrohalogenation by Trapping of Transfer Hy-
drogenation Intermediates. Org. Lett. 2018, 20, 4926-4929. (k) Ding, F.;
Zhang, Y.; Zhao, R.; Jiang, Y.; Bao, R.; Lin, K.; Shi, L. B(C6F5)3-Promoted
hydrogenations of N-heterocycles with ammonia borane. Chem. Com-
mun., 2017, 53, 9262-9264. (l) Chiara, F.; Maurizio, O. Ammonia bo-
rane as a reducing agent in organic synthesis. Chem. Commun., 2020,
18, 7719-7813. (m) Yang, C.; Xie, Z.; Yu, L. Research Progress of Direct
Transfer Hydrogenation Based on Ammonia Borane. Chinese Journal
of Chemistry. 2015, 35, 603-609.
(a) Xuan, Q.; Zhao, C.; Song, Q. Umpolung of protons from H2O: a
metal-free chemoselective reduction of carbonyl compounds via
B2pin2/H2O systems. Org. Biomol. Chem. 2017, 15, 5140-5144. (b) But-
ler, R. N.; Coyne, A. G. Water: Nature’s Reaction Enforcer—Compara-
tive Effects for Organic Synthesis “In-Water” and “On-Water”. Chem.
Rev. 2010, 110, 6302-6337.
(a) Czaplik, W. N.; Neudo¨rfl, J. M.; Wangelin, A. J. On the quantitative
recycling of Raney–Nickel catalysts on a lab-scale. Green Chem. 2007,
9, 1163-1165. (b) Wei, Z.; Chen, Y. Wang, J.; Su, D.; Tang, M.; Mao, S.;
Wang, Y. Cobalt Encapsulated in N-Doped Graphene Layers: An Effi-
cient and Stable Catalyst for Hydrogenation of Quinoline Compounds.
ACS Catal. 2016, 6, 5816-5822.
(The following will be filled in by the editorial staff)
Zhandarev, V. V.; Goshin, M. E.; Kostrova, U. M.; Shishkina, A. L.; Kazin,
V. N.; Mironov, G. S.; Abramov, I. G.; Smirnov, A. V.; Ramenskaya, L. M.
Synthesis and antibacterial activity of tetrahydroquinolin-8-ols. Phar-
maceutical Chemistry Journal 2006, 40, 557-559.
Kim, S. K.; Jacobsen, E. N. General Catalytic Synthesis of Highly Enanti-
omericaally Enriched Terminal Aziridines from Racemic Epoxides. An-
gew. Chem. Int. Ed. 2004, 43, 3952-3954.
Manuscript received: XXXX, 2021
Manuscript revised: XXXX, 2021
Manuscript accepted: XXXX, 2021
Accepted manuscript online: XXXX, 2021
Version of record online: XXXX, 2021
Chin. J. Chem. 2021, 39, XXX-XXX
© 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH