Table 1 Summary of the molecular weights and PDI of polymers A–D
Polymer
Method
Mol%
PDI
Mn/g molÀ1 (Â103)
n
% Yield (isolated)
A
B
C
D
ATRP
AIBN
AIBN
AIBN
10%
1.15
2.09
1.90
1.31
3.6
30.5
26.1
10.6
6
60
70
70
50
0.1%
1.0%
9.0%
49
42
28
n = average number of monomer units incorporated in the polymer based on Mn (absolute mol. wt.); Mol% = mol% of the initiator with respect
to the monomer 1d or 2c respectively.
polymerization, however, further studies are required in this
Notes and references
regard.
1 (a) G. R. Whittel, M. D. Hager, U. S. Schubert and I. Manners,
Nat. Mater., 2011, 10, 176–188; (b) J.-C. Eloi, L. Chabanne,
Thermogravimetric analysis (TGA) (Fig. S2, ESIw) of the
polymers revealed that the phenyl substituted polymers A–C
are stable upto 360 1C, whereas the methyl substituted
polymer D was found to be thermally less stable (Td = 235 1C)
(Fig. S2, ESIw). This can be attributed to the lower thermal
stability of the monomer 2c (Td = 214 1C) as compared to the
phenyl substituted monomer 1d (Td = 367 1C).
Differential Scanning Calorimetry (DSC) of monomer 1d
(Fig. S3, ESIw) showed a melting endotherm and an exotherm
for polymerization suggesting that the phenyl substituted
monomer is thermally polymerizable. No melting or polymer-
ization transition was observed in the DSC of monomer 2c.
Glass transition temperatures (Tg) of the polymers (Fig. S4,
ESIw), were determined from the DSC measurements and were
found to be in the range of 100 1C–130 1C for polymers A–C.
Thermal analysis of polymer D revealed a much lower Tg at 43
1C. This can be attributed to increased flexibility of the methyl
substituted polymer due to less steric bulk.
G. R. Whittel and I. Manners, Mater. Today, 2008, 11, 28–34.
2 M. Ginzburg, M. J. MacLachlan, S. M. Yang, N. Coombs,
T. W. Coyle, N. P. Raju, J. E. Greedan, R. H. Herber, G. A. Ozin
and I. Manners, J. Am. Chem. Soc., 2002, 124, 2625–2639.
3 (a) G. A. Ozin and A. C. Arsenault, Mater. Today, 2008, 11, 44–51;
(b) D. P. Puzzo, A. C. Arsenault, I. Manners and G. A. Ozin,
Angew. Chem., Int. Ed., 2009, 48, 943–947.
4 C. A. Ross, Y. S. Jung, V. P. Chuang, F. Ilievski, J. K. W. Yang,
I. Bita, E. L. Thomas, H. I. Smith, K. K. Berggren, G. J. Vancso
and J. Y. Cheng, J. Vac. Sci. Technol., B: Microelectron.
Nanometer Struct.–Process., Meas., Phenom., 2008, 26, 2489–2494.
5 (a) D. A. Rider, K. Liu, J.-C. Eloi, L. Vanderark, L. Yang,
J.-Y. Wang, D. Grozea, Z.-H. Lu, T. P. Russell and I. Manners,
ACS Nano, 2008, 2, 263–270; (b) I. Manners, J. Organomet. Chem.,
2011, 696, 1146–1149; (c) S. Lastella, Y. J. Jung, H. Yang,
R. Vajtai, P. M. Ajayan, C. Y. Ryu, D. A. Rider and
I. Manners, J. Mater. Chem., 2004, 14, 1791–1794;
(d) C. Hinderling, Y. Keles, T. Stockli, H. F. Knapp, T. de los
¨
Arcos, P. Oelhafen, I. Korczagin, M. A. Hempenius, G. J. Vancso,
R. Pugin and H. Heinzelmann, Adv. Mater., 2004, 16, 876–879.
6 U. F. J. Mayer, J. B. Gilroy, D. O’Hare and I. Manners, J. Am.
Chem. Soc., 2009, 131, 10382–10383.
In summary, we have synthesized a series of functionalized
CpCo(C4R4) complexes bearing a methacrylate or acrylate
moiety on the Cp ring. The acrylate-appended monomers (1d
and 2c) were found to polymerize using radical polymerization
methods. These polymers represent the first example
of the incorporation of such unique organometallic species
into a poly(acrylate) architecture and furthermore, attains a
100% incorporation of the Co(I) subunit in the resulting
material. The reactivity of the monomer was found to be
influenced by the variation of substituents on the remotely
located C4R4 ring (away from the polymerization site). The
thermal properties of the polymer could also be varied by
changing the R substituents. Future efforts aim at incorporating
7 (a) L. Ren, C. G. Hardy and C. Tang, J. Am. Chem. Soc., 2010,
132, 8874–8875; (b) L. Ren, C. G. Hardy, S. Tang, D. B. Doxie,
N. Hamidi and C. Tang, Macromolecules, 2010, 43, 9304–9310.
8 U. H. F. Bunz, Top. Curr. Chem., 1999, 201, 131–160.
9 (a) J. Jiao, G. J. Long, F. Grandjean, A. M. Beatty and
T. P. Fehler, J. Am. Chem. Soc., 2003, 125, 7522–7523;
(b) P. D. Byrne, D. Lee, P. Muller and T. M. Swager, Synth.
¨
Met., 2006, 156, 784–791; (c) S. Sasaki, Y. Tanabe and
M.
Yoshifuji,
Chem.
Commun.,
2002,
1876–1877;
(d) A. Goswami, Y. Nie, T. Oeser and W. Siebert, Eur. J. Inorg.
Chem., 2006, 566–572; (e) A. Goswami, C.-J. Maier, H. Pritzkow
and W. Siebert, J. Organomet. Chem., 2005, 690, 3251–3259.
10 (a) H. Nishihara, M. Kurashina and M. Murata, Macromol.
Symp., 2003, 196, 27–38; (b) M. Kurashina and H. Nishihara,
Macromol. Symp., 2004, 209, 141–162; (c) I. L. Rozhanskii,
I. Tomita and T. Endo, Macromolecules, 1996, 29, 1934–1938;
(d) Y. Sawada, I. Tomita and T. Endo, Polym. Bull., 1999, 43,
electron withdrawing
R groups, studying their effects,
165–170; (e) W. Steffen, B. Kohler, M. Altmann, U. Scherf,
¨
standardizing living polymerization methods for these species,
and developing Co(I) block copolymers and studying their self
assembly.
K. Stitzer, H.-C. Z. Loye and U. H. F. Bunz, Chem.–Eur. J.,
2001, 7, 117–126.
11 C. E. Anderson, L. E. Overman, C. J. Richards, M. P. Watson and
N. White, Org. Synth., 2007, 84, 139.
12 P. O’Donohue, S. A. Brusey, C. M. Seward, Y. Ortin,
We thank the Natural Sciences and Engineering Research
Council (NSERC) of Canada, the Canada Foundation for
Innovation (CFI) and The University of Western Ontario
for generous financial support. We also thank Ali Nazemi
and Dr E. Gillies (UWO) for the GPC analysis of the
polymers; Jacquelyn Price and Caleb Martin for X-ray data
collection.
B. C. Molloy, H. Muller-Bunz, A. R. Manning and
¨
M. J. McGlinchey, J. Organomet. Chem., 2009, 694, 2536.
13 A. D. Pomogailo and V. S. Savost’yanov, Synthesis and
Polymerization of Metal-containing Monomers, CRC Press, Boca
Raton, 1994.
14 C. G. Hardy, L. Ren, T. C. Tamboue and C. Tang, J. Polym. Sci.,
Part A: Polym. Chem., 2011, 49, 1409–1420.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 5301–5303 5303