Journal of Medicinal Chemistry
ARTICLE
(15) Workman, P. Combinatorial attack on multistep oncogenesis
by inhibiting the Hsp90 molecular chaperone. Cancer Lett. 2004, 206,
149–157.
(16) Donnelly, A.; Blagg, B. S. Novobiocin and additional inhibitors
of the Hsp90 C-terminal nucleotide-binding pocket. Curr. Med. Chem.
2008, 15, 2702–2717.
(17) Bishop, S. C.; Burlison, J. A.; Blagg, B. S. J. Hsp90: a novel target
for the disruption of multiple signaling cascades. Curr. Cancer Drug
Targets 2007, 7, 369–388.
(18) Lewis, R. J.; Tsai, F. T.; Wigley, D. B. Molecular mechanisms of
drug inhibition of DNA gyrase. BioEssays 1996, 18, 661–671.
(19) Reece, R. J.; Maxwell, A. DNA gyrase: structure and function.
Crit. Rev. Biochem. Mol. Biol. 1991, 26, 335–375.
(20) Laurin, P.; Ferroud, D.; Schio, L.; Klich, M.; Dupuis-Hamelin,
C.; Mauvais, P.; Lassaigne, P.; Bonnefoy, A.; Musicki, B. Structure-
activity relationship in two series of aminoalkyl substituted coumarin
inhibitors of gyrase B. Bioorg. Med. Chem. Lett. 1999, 9, 2875–2880.
(21) Ali, J. A.; Jackson, A. P.; Howells, A. J.; Maxwell, A. The 43-
kilodalton N-terminal fragment of the DNA gyrase B protein hydrolyzes
ATP and binds coumarin drugs. Biochemistry 1993, 32.
(22) Amolins, M. W.; Blagg, B. S. J. Natural product inhibitors of
Hsp90: potential leads for drug discovery. Mini-Rev. Med. Chem. 2009, 9,
140–152.
antiproliferative agents in breast cancer cells and potential inhibitors of
heat shock protein 90. J. Med. Chem. 2007, 50, 6189–6200.
(35) Radanyi, C.; LeBras, G.;Messaoudi, S.; Bouclier, C.; Peyrat, J.-F.;
Brion, J.-D.; Marsaud, V.; Renoir, J.-M.; Alami, M. Synthesisand biological
activity of simplified denoviose-coumarins related to novobiocin as potent
inhibitorsofheat-shockprotein 90 (hsp90). Bioorg. Med. Chem. Lett. 2008,
18, 2495–2498.
(36) Yu, X. M.; Shen, G.; Blagg, B. S. J. Synthesis of (ꢀ)-noviose
from 2,3-O-isopropylidene-D-erythronolactol. J. Org. Chem. 2004,
69, 7375.
(37) Hosmane, R. S.; Hong, M. How important is the N-3 sugar
moiety in the tight-binding interaction of coformycin with adenosine
deaminase? Biochim. Biophys. Res. Commun. 1997 236, 88–93.
(38) Eis, C.; Nidetzky, B. Substrate-binding recognition and speci-
ficity of trehalose phosphorylase from Schizophyllum commune exam-
ined in steady-state kinetic studies with deoxy and deoxyfluoro substrate
analogues and inhibitors. Biochem. J. 2002, 363, 335–340.
(39) Werz, D. B.; Seeberger, P. H. Carbohydrates as the next frontier
in pharmaceutical research. Chemistry 2005, 11, 3194–3206.
(40) Yu, Y. M.; Han, H.; Blagg, B. S. J. Synthesis of mono- and
dihydroxylated furanoses, pyranoses, and an oxepananose for the
preparation of natural product analogue libraries. J. Org. Chem. 2005,
70, 5599.
(23) Holdgate, G. A.; Tunnicliffe, A.; Ward, W. H. J.; Weston, S. A.;
Rosenbrock, G.; Barth, P. T.; Taylor, I. W. F.; Paupit, R. A.; Timms, D.
The entropic penalty of ordered water accounts for weaker binding of the
antibiotic novobiocin to a resistant mutant of DNA gyrase: a thermo-
dynamic and crystallographic study. Biochemistry 1997, 36, 9663–9673.
(24) Lewis, R. J.; Singh, O. M. P.; Smith, C. V.; Skarzyknski, T.;
Maxwell, A.; Wonacott, A. J.; Wigley, D. B. The nature of inhibition of
DNA gyrase by the coumarins and the cyclothialidines revealed by X-ray
crystallography. EMBO J. 1996, 15, 1412–1420.
(41) Donnelly, A.; Zhao, H.; Kusuma, B. R.; Blagg, B. S. J. Cytotoxic
sugar analogues of an optimized novobiocin scaffold. MedChemComm
2010, 1, 165–170.
(42) Zhao, H.; Kusuma, B. R.; Blagg, B. S. J. Synthesis and evaluation
of noviose replacements on novobiocin that manifest antiproliferative
activity. ACS Med. Chem. Lett. 2010, 1, 311–315.
(25) Tsai, F. T. F.; Singh, O. M. P.; Skarzynski, T.; Wonacott, A. J.;
Weston, S.; Tucker, A.; Pauptit, R. A.; Breeze, A. L.; Poyser, J. P.;
O’Brien, R.; Ladbury, J. E.; Wigley, D. B. The high-resolution crystal
structure of a 24 kDa gyrase B fragment from E. coli complexed with one
of the most potent coumarin inhibitors, clorobiocin. Proteins 1997,
28, 41–52.
(26) Marcu, M. G.; Schulte, T. W.; Neckers, L. Novobiocin and
related coumarins and depletion of heat shock protein 90-dependent
signaling proteins. J. Natl. Cancer Inst. 2000, 92, 242–248.
(27) Allan, R. K.; Mok, D.; Ward, B. K.; Ratajczak, T. Modulation of
chaperone function and cochaperone interaction by novobiocin in the
C-terminal domain of Hsp90. J. Biol. Chem. 2006, 281, 7161–7171.
(28) Yu, X. M.; Shen, G.; Neckers, L.; Blake, H.; Holzbeierlein, J.;
Cronk, B.; Blagg, B. S. J. Hsp90 inhibitors identified from a library of
novobiocin analogues. J. Am. Chem. Soc. 2005, 127, 12778–12779.
(29) Burlison, J. A.; Neckers, L.; Smith, A. B.; Maxwell, A.; Blagg,
B. S. J. Novobiocin: redesigning a DNA gyrase inhibitor for selective
inhibition of Hsp90. J. Am. Chem. Soc. 2006, 128, 15529–15536.
(30) Shelton, S. N.; Shawgo, M. E.; Comer, S. B.; Lu, Y.; Donnelly,
A. C.; Szabla, K.; Tanol, M.; Vielhauer, G. A.; Rajewski, R. A.; Matts,
R. L.; Blagg, B. S.; Robertson, J. D. KU135, a novel novobiocin-derived
C-terminal inhibitor of Hsp90, exerts potent antiproliferative effects in
human leukemic cells. Mol. Pharmacol. 2009, 76, 1314–1322.
(31) Burlison, J. A.; Blagg, B. S. J. Synthesis and evaluation of
coumermycin A1 analogues that inhibit the Hsp90 protein folding
machinery. Org. Lett. 2006, 8, 4855–4858.
(32) Burlison, J. A.; Avila, C.; Vielhauer, G.; Lubbers, D. J.;
Holzbeierlein, J.; Blagg, B. S. J. Development of novobiocin analogues
that manifest anti-proliferative activity against several cancer cell lines. J.
Org. Chem. 2008, 73, 2130–2137.
(33) Donnelly, A. C.; Mays, J. R.; Burlison, J. A.; Nelson, J. T.;
Vielhauer, G.; Holzbeierlein, J.; Blagg, B. S. J. The design, synthesis, and
evaluation of coumarin ring derivatives of the novobiocin scaffold that
exhibit antiproliferative activity. J. Org. Chem. 2008, 73, 8901–8920.
(34) Le Bras, G.; Radanyi, C.; Peyrat, J.-F.; Brio, J.-D.; Alami, M.;
Marsaud, V.; Stella, B.; Renoir, J.-M. New novobiocin analogues as
3853
dx.doi.org/10.1021/jm200148p |J. Med. Chem. 2011, 54, 3839–3853