to N-tosyl ketimines in the presence of a chiral diene ligand
in 2010.11,12 Although high yield and enantioselectivity
were achieved, the major drawback of this process in a
synthetic point of view was the requirement to use
tetraarylborates13 to promote the reaction effectively. In
addition, the use of N-nosyl ketimines resulted in moderate
yields under this catalytic system. To overcome these
problems, herein we describe that readily available potas-
sium organotrifluoroborates14,15 can now be employed as
the nucleophile for the rhodium-catalyzed asymmetric
addition to both N-tosyl and N-nosyl ketimines.
in the presence of [RhCl((R,R)-L1)]2 (5 mol % Rh) and
MeOH (3.0 equiv) in dioxane at 80 °C.
As we have previously reported,11 a reaction of N-tosyl
imine of 40-chloroacetophenone (1a; 0.2 M initial con-
centration) with sodium tetraphenylborate (2.0 equiv)
smoothly proceeds in the presence of [RhCl((R,R)-
16
L1)]2 (5 mol % Rh) and MeOH (2.0 equiv) in dioxane
Table 1. Rhodium-Catalyzed Asymmetric Addition of
Potassium Phenyltrifluoroborate to N-Tosyl and N-Nosyl
Ketimines 1
at 60 °C to give addition product (S)-2a in 83% yield with
97% ee (eq 1). Under these conditions, the use of potas-
sium phenyltrifluoroborate in place of sodium tetraphe-
nylborate significantly lowered the reactivity, giving 2a
only in 36% yield, although the enantioselectivity stayed
high (98% ee). After some investigation of the reaction
conditions, we were able to find a set of conditions that can
efficiently promote this reaction. Thus, as shown in Table
1, entry 1, addition product 2a can be obtained in 84%
yield with 98% ee by reacting 1a (0.3 M initial concen-
tration) with potassium phenyltrifluoroborate (3.0 equiv)
(10) For recent examples of catalytic asymmetric Strecker- and
Mannich-type reactions with ketimines, see: (a) Shen, K.; Liu, X.;
Cai, Y.; Lin, L.; Feng, X. Chem.;Eur. J. 2009, 15, 6008. (b) Wang, J.;
Hu, X.; Jiang, J.; Gou, S.; Huang, X.; Liu, X.; Feng, X. Angew. Chem.,
Int. Ed. 2007, 46, 8468. (c) Huang, J.; Liu, X.; Wen, Y.; Qin, B.; Feng,
X. J. Org. Chem. 2007, 72, 204. (d) Wieland, L. C.; Vieira, E. M.;
Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 570.
(e) Sukach, V. A.; Golovach, N. M.; Pirozhenko, V. V.; Rusanov, E. B.;
Vovk, M. V. Tetrahedron: Asymmetry 2008, 19, 761. (f) Tang, C.; Liu,
X.; Wang, L.; Wang., J.; Feng, X. Org. Lett. 2008, 10, 5305. (g) Du, Y.;
Xu, L.-W.; Shimizu, Y.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am.
Chem. Soc. 2008, 130, 16146. (h) Yazaki, R.; Nitabaru, T.; Kumagai,
N.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130, 14477. (i) Suto, Y.;
Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 500.
(11) Shintani, R.; Takeda, M.; Tsuji, T.; Hayashi, T. J. Am. Chem.
Soc. 2010, 132, 13168.
(12) For reviews on chiral diene ligands, see: (a) Shintani, R.;
€
Hayashi, T. Aldrichimica Acta 2009, 42, 31. (b) Defieber, C.; Grutzmacher,
H.; Carreira, E. M. Angew. Chem., Int. Ed. 2008, 47, 4482.
(13) For examples of the use of sodium tetraarylborates in rhodium-
catalyzed addition reactions, see: (a) Ueda, M.; Miyaura, N. J. Orga-
nomet. Chem. 2000, 595, 31. (b) Miura, T.; Sasaki, T.; Nakazawa, H.;
Murakami, M. J. Am. Chem. Soc. 2005, 127, 1390. (c) Ueura, K.;
Miyamura, S.; Satoh, T.; Miura, M. J. Organomet. Chem. 2006, 691,
2821. (d) Shintani, R.; Tsutsumi, Y.; Nagaosa, M.; Nishimura, T.;
Hayashi, T. J. Am. Chem. Soc. 2009, 131, 13588. (e) Shintani, R.; Isobe,
S.; Takeda, M.; Hayashi, T. Angew. Chem., Int. Ed. 2010, 49, 3795.
(f) Shintani, R.; Soh, Y.-T.; Hayashi, T. Org. Lett. 2010, 12, 4106.
(g) Shintani, R.; Hayashi, T. Org. Lett. 2011, 13, 350. (h) Chen, J.; Chen,
J.; Lang, F.; Zhang, X.; Cun, L.; Zhu, J.; Deng, J.; Liao, J. J. Am. Chem.
Soc. 2010, 132, 4552.
(14) For reviews, see: (a) Molander, G. A; Canturk, B. Angew. Chem.,
Int. Ed. 2009, 48, 9240. (b) Darses, S.; Genet, J.-P. Chem. Rev. 2008, 108,
288. (c) Stefani, H. A.; Cella, R.; Vieira, A. S. Tetrahedron 2007, 63, 3623.
(d) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275.
(15) For early examples of the use of potassium organotrifluorobo-
rates in rhodium-catalyzed addition reactions, see: (a) Batey, R. A.;
Thadani, A. N.; Smil, D. V. Org. Lett. 1999, 1, 1683. (b) Pucheault, M.;
Darses, S.; Genet, J.-P. Tetrahedron Lett. 2002, 43, 6155.
a Isolated yield. b Determined by chiral HPLC with hexane/2-propa-
nol. c The reaction was conducted at 90 °C. d The reaction was conducted
for 48 h. e The reaction was conducted with 4.0 equiv of PhBF3K and
4.0 equiv of MeOH.
Under these newly established conditions, several other
N-tosyl ketimines 1bꢀ1d effectively undergo phenylation
to give products 2 in high yields with excellent enantios-
electivities (88ꢀ97% yield, g99% ee; entries 2ꢀ4). Fur-
thermore, in contrast to our previous reactions using
sodium tetraarylborates as the nucleophile,11 the present
catalysis is also effective for the reaction of N-nosyl keti-
mines. For example, N-nosyliminesofvarious (hetero)aryl
(16) Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. J. Org.
Chem. 2005, 70, 2503.
2978
Org. Lett., Vol. 13, No. 12, 2011