102
A.M. EL-Hendawy / Journal of Molecular Structure 995 (2011) 97–102
osmium(II), strong
p
-acid ligands are needed to be in the coordina-
795957 for [OsII(bpy)2(acac)](PF6). Copy of information may be ob-
tained free of charge from The Director, CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK (fax: +44 1223 336 033; e-mail: deposit
tion sphere, e.g. bpy ligands which are familiar stabilisers of osmiu-
m(II) and cause a positive shift to the E1/2 for OsII/OsIII couple.
A linear correlation exists on combining the OsII/OsIII oxidation
potential (E1/2) with those of the MLCT energy in both the regions
490–550 nm and 647–780 nm. For a higher potential E1/2, the
MLCT transition energy becomes higher for the complexes [OsII
(bpy)2L](PF6) in the order L = hfacac > tfacac > acac > trop. This
correlation has already been reported for many ruthenium (II)
systems [27].
Acknowledgements
I thank Prof. W.P. Griffith (Imperial College, London) for Raman
data and Qatar University for thermal analysis data.
References
3.5. Reactivity towards benzyl alcohol oxidation
[1] B. Roy, T.K. Mallick, P.K. Das, B.K. Ghosh, Transition Met. Chem. 18 (1993) 89.
[2] A.M. El-Hendawy, A.H. Al-Kubaisi, H.A. Al-Madfa, Polyhedron 16 (1997) 3039.
[3] D.A. Buckingham, F.P. Dwyer, H.A. Goodwin, A.M. Sargeson, Aust. J. Chem. 17
(1964) 325.
[4] G.M. Bryant, J.E. Fergusson, H.K.J. Powell, Aust. J. Chem. 24 (1971) 257.
[5] F. Basuli, S.-M. Peng, S. Bhattacharya, Polyhedron 18 (1999) 391.
[6] F. Basuli, S.-M. Peng, S. Bhattacharya, Polyhedron 17 (1998) 2191.
[7] (a) L. Ruiz-Azuara, United States Patent 1996, vol. 5, 576, 326.;
(b) L. Ruiz-Azuara, United States Patent 1992, vol. RE35, 458, February 18,
1997.
[8] M.E. Bravo-Gomez, J.C. Garcia-Ramos, I. Gracia-Mora, L. Ruiz-Azuara, J. Inorg.
Biochem. 103 (2009) 299.
[9] (a) G.E. Buchel, I.N. Stepanenko, M. Hejl, M.A. Jakupec, V.B. Arion, B.K. Keppler,
Inorg. Chem. 48 (2009) 10737;
(b) A.M. Pizarro, A. Habtemariam, P.J. Sadler, Top Organomet. Chem. 32 (2010)
21.
[10] A.M. El-Hendawy, S.Y. Alqaradawi, H.A. AL-Madfa, Transition Met. Chem. 25
(2000) 572.
We have found that [RuII(bpy)2(acac)](PF6) acts as a good cata-
lytic oxidant in the presece of t-butylhydroperoxide (t-BuOOH) as a
co-oxidant for selective oxidation of primary and secondary alchol-
ols to the corresponding aldehydes and ketones [2]. The use of the
complex [Os(bpy)2(acac)](PF6) (1) has been tried for such catalytic
oxidation with t-BuOOH or N-methylmorpholine N-oxide as co-
oxidants, but no oxidation products were obtained over 3–4 h of
the reaction time under the similar conditions. Use of the osmium
(II) complex (1) with H2O2 as a co-oxidant (Section 2.2.2) in the
presence of Aliquat 336 as a phase transfer catalyst in dichloroeth-
ane solution (at 80 °C) for 2 h was effective for the selective oxida-
tion of benzyl alcohol to benzaldehyde with a catalytic turnover of
110, lower than obtained by [RuIIbpy(acac)2](PF6)/H2O2 (turn-
over = 480) [10]. Here we have used a half equivalent amount of
H2O2 (30%) than that mentioned for RuCl3ꢁnH2O/H2O2 system in
which benzoic acid was completely formed [41]. Under the same
conditions, cyclohexanol was not oxidized at all. In the absence
of Aliquat 336 or when using MeCN as a solvent [42], no oxidation
products were obtained and this suggests that the phase transfer
catalyst brings both the osmium catalyst and H2O2 to the organic
layer where reaction occurs. The low reactivity of the osmium
complex (1) in comparison with the ruthenium complexes is per-
haps not surprising, thus [RuO4]ꢀ and [RuIII(PPh3)2Cl2(acac)] are
much better oxidants than those of [OsO4]ꢀ and [Os(PPh3)2Cl2
(acac)] [10,43,44].
[11] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C. Burla, G. Polidori,
M. Camalli, J. Appl. Cryst. 27 (1994) 435.
[12] S. Mackay, C. Gilmore, C.J. Edwards, N. Stewart, K. Shankland, maXus Computer
Program for the Solution and Refinement of Crystal Structures. Bruker Nonius,
The Netherlands, MacScience, Japan and The University of Glasgow, 1999.
[13] Z. Otwinowski, W. Minor, in: C.W. Carter Jr., R.M. Sweet (Eds.), Methods in
Enzymology, vol. 276, Academic Press, New York, 1997, pp. 307–326.
[14] E.M. Kober, J.V. Caspar, B.P. Sullivan, T.J. Meyer, Inorg. Chem. 27 (1988) 4587.
[15] B.K. Ghosh, A. Mukhopadhyay, S. Goswami, S. Ray, A. Chakravorty, Inorg.
Chem. 23 (1984) 4633.
[16] J. Chatt, G.J. Leigh, D.M.P. Mingos, R. Paske, J. Chem. Soc. (A) (1968) 2636.
[17] A.M. El-Hendawy, Polyhedron 9 (1990) 2309.
[18] Z. Shirin, R.N. Mukherjee, Polyhedron 11 (1992) 2625.
[19] O.O.E. Onawumi, O.O.P. Faboya, O.A. Odunola, T.K. Prasad, M.V. Rajasekharan,
Polyhedron 27 (2008) 113.
[20] M.M. Finnegan, T.G. Lutz, W.O. Nelson, A. Smith, C. Orvig, Inorg. Chem. 26
(1987) 2171.
[21] G.T. Behnke, K. Nakamoto, Inorg. Chem. 6 (1967) 433.
[22] W.P. Griffith, C.A. Pumphrey, C.A. Skapski, Polyhedron 6 (1987) 891.
[23] S.P. Copper, Y.B. Koh, K.N. Raymond, Inorg. Chem. 104 (1982) 5092.
[24] R.B. Von Dreele, R.C. Fay, J. Am. Chem. Soc. 94 (1972) 7935.
[25] T.W. Hambley, C.J. Hawkins, T.A. Kabanos, Inorg. Chem. 26 (1987) 3740.
[26] C.J. Hawkins, T.A. Kabanos, Inorg. Chem. 28 (1989) 1084.
[27] (a) D. Mishra, S. Naskar, B. Adhikary, R.J. Butcher, S.K. Chattopadhyay,
Polyhedron 24 (2005) 201;
4. Conclusion
Careful synthesis of the complexes [OsII(bpy)2L](PF6) was per-
formed under N2 and use of the heterogeneous base catalyst
(CaCO3), otherwise impure and unidentified osmium(II) complexes
containing some paramagnetic Os(III) species are obtained. The re-
dox OsII/OsIII potentials (E1/2) for these osmium(II) complexes are
shifted to more lower values compared with those of analogous
ruthenium(II) complexes [2]. These electrochemical data showed
that the O,O-donor ligand (L) stabilizes the high oxidation state
of osmium(III) and confirms that OsII is easier to oxidize than RuII
[45] and the general trend is consistent with the inherent stability
of the third-row vs second-row transition metals in higher oxida-
tion states. As expected, osmium complexes are weaker oxidants
than those of ruthenium because the 5d electrons in the third-
row transition element, osmium are less tightly held by the nu-
cleus than the 4d electrons in its congener, ruthenium. Analytical
and spectroscopic data together with the structural data of os-
mium complex (1) supported the structural formulations of com-
plexes .
(b) A.B.P. Lever, P.R. Auburn, E.S. Dodsworth, M.-a. Haga, W. Lui, M. Melnik, A.
Nevin, J. Am. Chem. Soc. 110 (1988) 8076;
(c) K. Mizushima, M. Nakaura, S-B Park, H. Nishiyama, K. Harada, M.-a. Haga,
Inorg. Chim. Acta 261 (1997) 175.
[28] A.M. El-Hendawy, Inorg. Chim. Acta 179 (1991) 223.
[29] A.M. El-Hendawy, Polyhedron 10 (1991) 2511.
[30] G.M. Bryant, J.E. Fergusson, Aust. J. Chem. 24 (1971) 275.
[31] M.A. Queiros, S.D. Robinson, Inorg. Chem. 17 (1978) 310.
[32] R.S. Nicholson, I. Shain, Anal. Chem. 36 (1964) 706.
[33] J. Chakravarty, S. Bhattacharya, Polyhedron 15 (1996) 257.
[34] A.M. El-Hendawy, Transition Met. Chem. 17 (1992) 250.
[35] T. Matsumura-Inoue, T. Tominaga-Morimoto, J. Electroanal. Chem. 93 (1978)
127.
[36] G.S. Patterson, R.S. Holm, Inorg. Chem. 11 (1972) 2285.
[37] N.C. Pramanik, S. Bhattacharya, Polyhedron 16 (1997) 1755.
[38] N.C. Pramanik, S. Bhattacharya, J. Chem. Research (S) (1997) 98.
[39] N. Bag, G.K. Lahiri, S. Bhattacharya, L.R. Falvello, A. Chakravorty, Inorg. Chem.
27 (1988) 4396.
[40] S. Bhattacharya, Polyhedron 12 (1993) 235.
[41] G. Barak, J. Dakka, Y. Sasson, J. Org. Chem. 53 (1988) 3553.
[42] G.B. Shul’pin, G.Suss-Fink, L.S. Shul’pina, Chem. Commun. (2000) 1131.
[43] A.C. Dengel, A.M. EL-Hendawy, W.P. Griffith, A.D. White, Transition Met. Chem.
14 (1989) 230.
5. Supplementary data
[44] A.M. El-Hendawy, M.S. El-Shahawi, Polyhedron 8 (1989) 2813.
[45] H. Taube, Pure Appl. Chem. 51 (1979) 901.
Crystallographic data for the structure analysis been deposited
with the Cambridge Crystallographic Data Center, CCDC No.