CCDC 808034, 808035 contain the supplementary crystallographic
data for 2 and 6.
1 E. F. Murphy, R. Murugavel and H. W. Roesky, Chem. Rev.,
1997, 97, 3425–3468.
2 See examples of fluorides in +4 oxidation state of group 14:
(a) G. V. Odabashyan, V. A. Ponomarenko and A. D. Petrov,
Russ. Chem. Rev., 1961, 30, 407–426; (b) A. P. Kostikov,
¨ ¨
L. Iovkova, J. Chin, E. Schirrmacher, B. Wangler, C. Wangler,
K. Jurkschat, G. Cosa and R. Schirrmacher, J. Fluorine Chem.,
2011, 132, 27–34; (c) K. Junold, C. Burschka, R. Bertermann and
R. Tacke, Dalton Trans., 2010, 39, 9401–9413; (d) M. Mehring,
I. Vrasidas, D. Horn, M. Schurmann and K. Jurkschat, Organo-
¨
metallics, 2001, 20, 4647–4653; (e) W.-P. Leung, W.-H. Kwok,
Z.-Y. Zhou and T. C. W. Mak, Organometallics, 2003, 22,
1751–1755; (f) R. A. Varga, K. Jurkschat and C. Silvestru, Eur.
Fig. 2 Solid state structure of 6. The anisotropic displacement
parameters are depicted at the 50% probability level. All hydrogen
atoms, the phenyl groups (Ph), and the 2,6-diisopropylphenyl moieties
(dipp) are omitted for clarity. Selected bond lengths (A) and angles (1):
Pb1–N1 2.6075(16), Pb1–N3 2.6319(16), Pb1–O1 2.1679(13), Pb1–O2
2.1707(14); N1–Pb1–O1 77.37(5), N3–Pb1–O1 93.24(5), N3–Pb1–N1
166.23(5), O1–Pb1–O2 85.09(5).
J. Inorg. Chem., 2008, 708–716; (g) D. J. Brauer, H. Burger and
¨
R. Eujen, Angew. Chem., 1980, 92, 859–860 (Angew. Chem., Int.
Ed. Engl., 1980, 19, 836–837); (h) E. Lukevics, S. Belyakov,
P. Arsenyan and J. Popelis, J. Organomet. Chem., 1997, 549,
163–165.
3 (a) P. Riviere, J. Satge, A. Castel and H. Normant, C. R. Acad.
´
Sci. Paris, 1976, 282, 971–974; (b) Y. Ding, H. Hao, H. W. Roesky,
M. Noltemeyer and H.-G. Schmidt, Organometallics, 2001, 20,
4806–4811.
4 (a) R. W. Chorley, D. Ellis, P. B. Hitchcock and M. F. Lappert,
Bull. Soc. Chim. Fr., 1992, 129, 599–604; (b) A. Jana,
H. W. Roesky, C. Schulzke, A. Doring, T. Beck, A. Pal and
¨
R. Herbst-Irmer, Inorg. Chem., 2009, 48, 193–197; (c) A. Jana,
H. W. Roesky, C. Schulzke and P. P. Samuel, Organometallics,
2010, 29, 4837–4841.
6 has been also characterized by spectroscopic and analytic
measurements in addition to the X-ray structural analysis. The
1H NMR spectrum of 6 agrees with the solid state structure.
Two singlet resonances were observed for the methyl (d 2.96
and d 1.86 ppm) and the CH protons also appear as another
singlet at d 5.19 ppm. In the 19F NMR spectrum of 6 the C–F
resonance appears as a sharp singlet at d ꢀ76.2 ppm. This
shows an upfield shift compared to that of the ketone,
PhCOCF3 (d ꢀ71.6). The 207Pb NMR spectrum of 6 exhibits
a singlet which is shifted downfield (d 853.9 ppm), when
compared with 2 (d 787.4 ppm). Compound 6 is found to be
sensitive towards moisture and air and it is soluble in benzene,
THF, toluene, and diethyl ether.
5 Review: (a) M. Driess and H. Grutzmacher, Angew. Chem., 1996,
¨
108, 900–929 (Angew. Chem., Int. Ed. Engl., 1996, 35, 828–856);
(b) P. J. Davidson, D. H. Harris and M. F. Lappert, J. Chem. Soc.,
Dalton Trans., 1976, 2268–2274; (c) S. Wingerter, H. Gornitzka,
R. Bertermann, S. K. Pandey, J. Rocha and D. Stalke, Organo-
metallics, 2000, 19, 3890–3894.
6 (a) M. Kaupp and P. v. R. Schleyer, J. Am. Chem. Soc., 1993, 115,
1061–1073; (b) K. Jurkschat, K. Peveling and M. Schurmann, Eur.
¨
J. Inorg. Chem., 2003, 3563–3571 and references therein.
7 (a) A. Murso, M. Straka, M. Kaupp, R. Bertermann and
D. Stalke, Organometallics, 2005, 24, 3576–3578; (b) A. Jana,
S. P. Sarish, H. W. Roesky, C. Schulzke, A. Doring and
¨
M. John, Organometallics, 2009, 28, 2563–2567; (c) A. Jana,
In conclusion, after the successful syntheses of amidinato-
silicon(II) and b-diketiminatolead(II) monofluorides, the series
of fluorides with the heavier low valent group 14 elements has
been completed, although the corresponding stable fluoride of
low valent carbon remains still elusive. The reaction of lead(II)
monofluoride with PhCOCF3 results in a homoleptic lead
compound in which the ketone is incorporated. Currently we
are investigating the reactivity of this lead(II) monofluoride as
fluorinating reagent.
H. W. Roesky, C. Schulzke, P. P. Samuel and A. Doring, Inorg.
Chem., 2010, 49, 5554–5559.
¨
8 (a) P. L. Timms, Inorg. Chem., 1968, 7, 387–389; (b) P. L. Timms,
R. A. Kent, T. C. Ehlert and J. L. Margrave, J. Am. Chem. Soc.,
1965, 87, 2824–2828.
9 A. Jana, P. P. Samuel, G. Tavcar, H. W. Roesky and C. Schulzke,
J. Am. Chem. Soc., 2010, 132, 10164–10170.
10 (a) R. E. Banks, J. E. Burgessw, M. Cheng and R. N. Haszeldine,
J. Chem. Soc., 1965, 575–581; (b) L. I. Goryunov,
V. D. Shteingarts, J. Grobe, B. Krebs and M. U. Triller, Z. Anorg.
Allg. Chem., 2002, 628, 1770–1779.
11 (a) C.-W. So, H. W. Roesky, J. Magull and R. B. Oswald, Angew.
Chem., 2006, 118, 4052–4054 (Angew. Chem., Int. Ed., 2006, 45,
3948–3950); (b) S. S. Sen, H. W Roesky, D. Stern, J. Henn and
D. Stalke, J. Am. Chem. Soc., 2010, 132, 1123–1126.
Support of the Deutsche Forschungsgemeinschaft and the
DNRF funded Center of Materials Crystallography is highly
acknowledged.
Notes and references
y Crystal data for 2: C29H41FN2Pb, Mr = 643.84, 0.05 ꢁ 0.1 ꢁ 0.1 mm,
a = 11.7697(16), b = 20.465(3), c = 11.7727(16) A, b = 95.906(2),
V = 2820.6(7) A3, Z = 4, rcalcd = 1.516 Mg mꢀ3, m(Mo Ka) =
6.066 mmꢀ1, 2ymax = 611, 90 262 reflections measured, 8667 inde-
pendent (Rint = 0.039), R1 = 0.021 (I 4 2s(I)), wR2 = 0.0503
(all data), res. density peaks: 3.12 to ꢀ1.41 e Aꢀ3; crystal data for 6:
C74H92F6N4O2Pb, Mr = 1390.71, 0.15 ꢁ 0.15 ꢁ 0.1 mm, a =
15.7060(15), b = 18.9000(18), c = 26.336(3) A, b = 107.0930(10),
V = 7472.3(12) A3, Z = 4, rcalcd = 1.236 Mg mꢀ3, m (Mo Ka) =
2.316 mmꢀ1, 2ymax = 521, 1 666 483 reflections measured, 14 728
12 R. S. Ghadwal, K. Propper, B. Dittrich, P. G. Jones and
¨
H. W. Roesky, Inorg. Chem., 2011, 50, 358–364.
13 A. Jana, D. Leusser, I. Objartel, H. W. Roesky and D. Stalke,
Dalton Trans., 2011, DOI: 10.1039/c0dt01675f.
14 P. Jutzi, U. Holtmann, H. Bogge and A. Muller, J. Chem. Soc.,
¨
Chem. Commun., 1988, 305–306.
¨
15 (a) A. Jana, H. W. Roesky and C. Schulzke, Dalton Trans., 2010,
39, 132–138; (b) A. Jana, H. W. Roesky, C. Schulzke and
A. Doring, Angew. Chem., 2009, 121, 1126–1129 (Angew. Chem.,
¨
Int. Ed., 2009, 48, 1106–1109).
independent (Rint = 0.0387), R1 = 0.0208 (I 4 2s(I)), wR2
=
16 E. C. Y. Tam, N. C. Johnstone, L. Ferro, P. B. Hitchcock and
J. R. Fulton, Inorg. Chem., 2010, 49, 5554–5559.
0.0543 (all data), res. density peaks: 0.717 to –1.197
e .
Aꢀ3
c
5436 Chem. Commun., 2011, 47, 5434–5436
This journal is The Royal Society of Chemistry 2011