1924
M.W. Bouwkamp et al. / Journal of Organometallic Chemistry 696 (2011) 1920e1924
(c) R.L. Halterman, T. Ramsey, Z. Chen, J. Org. Chem. 59 (1994) 2642;
(d) J.Y. Yun, S.L. Buchwald, J. Am. Chem. Soc. 121 (1999) 5640.
[4] (a) N.A. Petasis, E.I. Bzowej, J. Am. Chem. Soc. 112 (1990) 6392;
(b) S.H. Pine, G.S. Shen, H. Huang, Synthesis (1991) 165;
(c) N.A. Petasis, E.I. Bzowej, J. Org. Chem. 57 (1992) 1327.
[5] B. Klei, J.H. Teuben, H.J.J. De Liefde Meijer, Chem. Soc. Chem. Commun. (1981)
342.
[6] T. Nakano, T. Migita, Chem. Lett. (1993) 2157.
[7] (a) J.C. Huffman, K.G. Moloy, J.A. Marsella, K.G. Caulton, J. Am. Chem. Soc. 102
(1980) 3009;
unrealistic CeC bond distances in the structure of 3c: the C-Ph bond
distances observed are 1.58e1.60 Å (1.47 Å for compounds 3a, b).
3.3. Computational studies
To probe the preferred binding modes of acetone and benzo-
phenone to these trivalent decamethylmetallocene cations, both
the acetone and the benzophenone adducts were studied using
RIDFT calculations (see Experimental Section for more information
on the calculations, and Table 3 for energies). In addition to the
[Cp*2M] ketone adducts, also the corresponding [Cp2M] complexes
were considered. The optimized geometries are in general very
similar to the X-ray data. The relative energies associated with the
binding of acetone vs. benzophenone are very similar, especially in
case of the [Cp*2M] cations. Furthermore, the calculations corrob-
orate the observation that the coordination of a second molecule of
acetone is favored in case of 2a. The binding energies in the scan-
docene and titanocene cations are virtually identical, whereas
those in the vanadocene cations are considerable smaller.
(b) E. Klei, J.H. Telgen, J.H. Teuben, J. Organomet. Chem. 209 (1981) 297;
(c) L. Giannini, A. Caselli, E. Solari, C. Floriani, A. Chiesi-Villa, C. Rizzoli, N. Re,
A. Sgamellotti, J. Am. Chem. Soc. 119 (1997) 9709;
(d) O.V. Ozerov, S. Parkin, C.P. Brock, F.T. Ladipo, Organometallics 19 (2000)
4187;
(e) J.V. Kingston, O.V. Ozerov, S. Parkin, C.P. Brock, F.T. Lapido, J. Am. Chem.
Soc. 124 (2002) 12217;
(f) J.V. Kingston, V. Sarveswaran, S. Parkin, F.T. Ladipo, Organometallics 22
(2003) 136.
[8] (a) R. Allmann, V. Bätzel, R. Pfeil, G. Schmid, Z. Naturforsch. 31b (1976) 1329;
(b) S. Gambarotta, M. Pasquali, C. Floriani, A.C. Villa, C. Guastini, Inorg. Chem.
20 (1981) 1173;
(c) Y. Sun, W.E. Piers, G.P.A. Yap, Organometallics 16 (1997) 2509;
(d) W. Spaether, K. Klass, G. Erker, F. Zippel, R. Fröhlich, Chem. Eur. J. 4 (1998)
1411;
(e) V.V. Burlakov, P. Arndt, W. Baumann, A. Spannenberg, U. Rosenthal,
A.V. Letov, K.A. Lyssenko, A.A. Korlyukov, L.I. Strunkina, M.K. Minacheva,
V.B. Shur, Organometallics 20 (2001) 4072;
4. Conclusions
(f) W.J. Evans, C.H. Fujimoto, M.A. Johnston, J.W. Ziller, Organometallics 21
(2002) 1825.
[9] (a) J.E. Hill, P.E. Fanwick, I.P. Rothwell, Organometallics 11 (1992) 1771;
(b) N. Peulecke, A. Ohff, A. Tillack, W. Baumann, R. Kempe, V.V. Burlakov,
U. Rosenthal, Organometallics 15 (1996) 1340;
(c) B. Castenello, A. Zanotti-Gerosa, E. Solari, C. Floriani, A. Chiesi-Villa,
C. Rizzoli, Organometallics 15 (1996) 4898.
[10] (a) G. Erker, U. Dorf, P. Czisch, J.L. Petersen, Organometallics 5 (1986) 668;
(b) S. Stella, C. Floriani, Chem. Commun. (1986) 1053;
(c) B. Hessen, J. Blenkers, J.H. Teuben, G. Helgesson, S. Jagner, Organometallics
8 (1989) 2809;
The reaction of the decamethylmetallocene cations [Cp*2M]
[BPh4] (M ¼ Sc, Ti, V) with ketones resulted in the formation of the
corresponding kO-ketone adducts. The stoichiometry of the reac-
tions is dependent on both electronic and steric factors. For
acetone, complexes with the same stoichiometry were obtained as
the corresponding THF adducts. In case of the larger benzophenone
ligand, mono-benzophenone adducts were isolated, exclusively. In
the absence of overruling steric effects, the MeOeC angle in these
ketone adducts is dependent on the number of free valence orbitals
in the base-free metallocene cations. A bent coordination of the
ketone is observed in case of complexes with one free valence
orbital (M ¼ V), whereas linear structures are observed when the
ketone can donate more than one pair of electrons to the metal
center (M ¼ Sc, Ti). In the benzophenone adduct [Cp*2V(OCPh2)]þ,
a close to linear MeOeC angle was observed as well. This is most
likely the result of the increased size of the benzophenone ligand
compared to the acetone ligand. The acetone and benzophenone
ligands in the other complexes seem virtually unaffected by the
binding to the metallocene cations.
(d) R.W. Waymouth, K.S. Potter, W.P. Schaefer, R.H. Grubbs, Organometallics
9 (1990) 2843;
(e) U. Blaschke, G. Erker, M. Nissinen, E. Wegelius, R. Frohlich, Organometallics
18 (1999) 1224;
(f) O. Tardif, Z. Hou, M. Nishiura, T. Koizumi, Y. Wakatsuki, Organometallics 20
(2001) 4565.
[11] (a) M.W. Bouwkamp, J. de Wolf, I. del Hierro Morales, J. Gercama, A. Meetsma,
S.I. Troyanov, B. Hessen, J.H. Teuben, J. Am. Chem. Soc. 124 (2002) 12956;
(b) M.W. Bouwkamp, P.H.M. Budzelaar, J. Gercama, I. del Hierro Morales, J. de
Wolf, A. Meetsma, S.I. Troyanov, J.H. Teuben, B. Hessen, J. Am. Chem. Soc. 127
(2005) 14310.
[12] SMART, SAINT, SADABS, Xprep and SHELXL/NT. Smart Apex Software Refer-
ence Manuals. Bruker AXS Inc., Madison, Wisconsin, USA, 2000.
[13] P.T. Beurskens, G. Beurskens, R. de Gelder, S. García-Granda, R.O. Gould,
R. Israël, J.M.M. Smits, The DIRDIF-99 Program System. University of Nijme-
gen, The Netherlands, 1999.
[14] (a) R. Ahlrichs, M. Bär, H.-P. Baron, R. Bauernschmitt, S. Böcker, M. Ehrig,
K. Eichkorn, S. Elliott, F. Furche, F. Haase, M. Häser, C. Hättig, H. Horn, C. Huber,
U. Huniar, M. Kattannek, A. Köhn, C. Kölmel, M. Kollwitz, K. May,
C. Ochsenfeld, H. Öhm, A. Schäfer, U. Schneider, O. Treutler, K. Tsereteli,
B. Unterreiner, M. von Arnim, F. Weigend, P. Weis, H. Weiss, Turbomole
Version 5. Theoretical Chemistry Group, University of Karlsruhe, January
2002;
Acknowledgments
This investigation was supported by The Netherlands Organi-
zation for Scientific Research.
(b) O. Treutler, R.J. Ahlrichs, Chem. Phys. 102 (1995) 346;
(c) Turbomole basisset library, Turbomole Version 5, see Reference [1].
(d) A. Schäfer, H. Horn, R.J. Ahlrichs, Chem. Phys. 97 (1992) 2571;
(e) C. Andrae, U. Häussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta
77 (1990) 123.
Appendix A. Supplementary material
CCDC 775892e775898 contain the supplementary crystallo-
graphic data for the X-ray structures in this paper. These data can be
obtained free of charge from The Cambridge Crystallographic Data
[15] (a) PQS Version 2.4. Parallel Quantum Solutions, Fayetteville, Arkansas, USA,
2001, (the Baker optimizer is available separately from PQS upon request);
(b) J.J. Baker, Comput. Chem. 7 (1986) 385.
[16] (a) A.D. Becke, Phys. Rev. 38A (1988) 3089;
(b) J.P. Perdew, Phys. Rev. 33B (1986) 8822.
References
[17] K. Eichkorn, F. Weigend, O. Treutler, R.J. Ahlrichs, Theor. Chem. Acc. 97 (1997)
119.
[18] The crystallization behavior of acetone is dependent on pressure and
temperature. The value reported here is that of the structure determined at
atmospheric pressures and 110K, the conditions most similar to the X-ray
analysis performed on compounds D.R. Allen, S.J. Clark, R.M. Ibberson,
S. Parsons, C.R. Pulham, L. Sawyer, Chem. Commun. (1999) 751 2aec.
[19] R.D. Shannon, Acta Crystallogr. A32 (1976) 751.
[1] N.A. Petasis, Y.-H. Hu, Curr. Org. Chem. 1 (1997) 249.
[2] (a) F. Sato, T. Jinbo, M. Sato, Tetrahedron Lett. 21 (1980) 2171;
(b) M.C. Barden, J.J. Schwartz, Org. Chem. 60 (1995) 5963.
[3] (a) T. Nakano, Y. Nagai, Chem. Lett. (1988) 481;
(b) M.B. Carter, B. Schiøtt, A. Gutiérrez, S.L. Buchwald, J. Am. Chem. Soc. 116
(1994) 11667;