(4R)- and (4S)-4-acetoxymethyl-1-[(S)-1-
phenylethyl]pyrrolidin-2-one 12
Lett., 2006, 47, 1145; (c) F. I. McGonagle, L. Brown, A. Cooke and A.
Sutherland, Org. Biomol. Chem., 2010, 8, 3418.
3 J. Quirante, C. Escolano, A. Merino and J. Bonjoch, J. Org. Chem.,
1998, 63, 968.
4 X. Vila, J. Quirante, L. Paloma and J. Bonjoch, Tetrahedron Lett., 2004,
45, 4661.
5 (a) J. Quirante, C. Escolano, M. Massot and J. Bonjoch, Tetrahedron,
1997, 53, 1391; (b) J. Quirante, C. Escolano, F. Diaba and J. Bonjoch,
Heterocycles, 1999, 50, 731; (c) J. Quirante, C. Escolano, F. Diaba and
J. Bonjoch, J. Chem. Soc., Perkin Trans. 1, 1999, 1157.
Following the above procedure for the cyclization of 6 to 10, from
trichloroacetamide 9 (282 mg, 0.77 mmol) with a 3 h reaction time,
pyrrolidone 12a (78 mg) and its epimer 12b (79 mg) were obtained
after chromatography (EtOAc) as yellow oils (78% overall yield).
1
12a: IR (NaCl) 1741, 1684; H NMR (400 MHz) 1.52 (d, J =
6.8 Hz, 3H, CH3), 2.05 (s, 3H, CH3CO), 2.26 (dd, J = 20.4, 10 Hz,
1H, H-3), 2.58 (dd, J = 19.8, 8.4 Hz, 1H, H-3), 2.56–2.62 (m, 1H,
H-4), 3.09 (d, J = 6 Hz, 2H, H-5), 4.02 (dd, J = 11.4, 6.8 Hz, 1H,
CHO), 4.08 (dd, J = 11.2, 5.6 Hz, 1H, CHO), 5.50 (q, J = 7.2 Hz,
1H, CH), 7.20–7.40 (m, 5H, ArH); 13C NMR (100 MHz, DEPT)
16.0 (CH3), 20.7 (CH3CO), 30.4 (C-4), 34.4 (C-3), 44.8 (C-5), 48.9
(CH), 65.9 (CH2O), 127.0, 127.5 and 128.5 (C-o, C-m, C-p), 139.8
(C-ipso), 170.8 (CO), 172.7 (CO). Anal. calcd for C15H19NO3·1/10
H2O: C, 68.47; H, 7.35; N, 5.32. Found: C, 68.30; H, 7.55; N, 5.37.
6 J. Quirante, M. Torra, F. Diaba, C. Escolano and J. Bonjoch,
Tetrahedron: Asymmetry, 1999, 10, 2399.
7 J. Quirante, F. Diaba, X. Vila, J. Bonjoch, E. Lago and E. Molins, C.
R. Acad. Sci. Paris, 2001, 4, 513.
8 (a) X. L. Huang and J. J. Dannenberg, J. Org. Chem., 1991, 56, 5421;
(b) M. Gulea, J. M. Lo´pez-Romero, L. Fensterbank and M. Malacria,
Org. Lett., 2000, 2, 2591; (c) J. Cassayre and S. Z. Zard, J. Organomet.
Chem., 2001, 624, 316.
9 For radical cyclizations involving N-(a-methylbenzyl) substituted com-
pounds, see: (a) B. Cardillo, R. Galeazzi, G. Mobbili, M. Orena and M.
Rossetti, Heterocycles, 1994, 38, 2663; (b) H. Ishibashi, C. Kameoka,
K. Kodama and M. Ikeda, Tetrahedron, 1996, 52, 489; (c) H. Ishibashi,
Y. Fuke, T. Yamashita and M. Ikeda, Tetrahedron: Asymmetry, 1996,
7, 2531; (d) H. Ishibashi, K. Kodama, C. Kameoka, H. Kawanami and
M. Ikeda, Tetrahedron, 1996, 52, 1386; (e) H. Ishibashi, C. Kameoka,
K. Kodama, H. Kawanami, M. Humada and M. Okeda, Tetrahedron,
1997, 53, 9611; (f) M. Ikeda, S. Ohtani, T. Sato and H. Ishibashi,
Synthesis, 1998, 1803.
1
12b: IR (NaCl): 1740, 1683; H NMR (400 MHz) 1.53 (d, J =
7.2 Hz, 3H, CH3), 1.97 (s, 3H, COCH3), 2.23 (ddd, J = 19.6, 10,
4.2 Hz, 1H, H-3), 2.53–2.67 (m, 2H, H-3, H-4), 2.74 (dd, J = 10,
4.8 Hz, 1H, H-5), 3.45 (dd, J = 10, 7.6 Hz, 1H, H-5), 3.87 (dd,
J = 10.8, 6.8 Hz, 1 H, CHO), 3.94 (dd, J = 10.6, 6 Hz, 1H, CHO),
5.50 (q, J = 7.2 Hz, 1H, CH), 7.20–7.40 (m, 5H, ArH); 13C NMR
(100 MHz, DEPT) 16.0 (CH3), 20.6 (CH3CO), 30.1 (C-4), 34.5
(C-3), 44.9 (C-5), 49.0 (CH), 65.8 (CH2O), 127.0, 127.6 and 128.5
(C-o, C-m, C-p), 139.8 (C-ipso), 170.7 (CO), 172.8 (CO). Anal.
calcd for C15H19NO3·1/2 H2O: C, 66.64; H, 7.46; N, 5.18. Found:
C, 66.64; H, 7.37; N, 5.18.
10 A. J. Clark, F. De Campo, R. J. Deeth, R. P. Filik, S. Gatard, N. A.
Hunt, D. Laste´coue`res, G. H. Thomas, J.-B. Verlhac and H. Wongtap,
J. Chem. Soc., Perkin Trans. 1, 2000, 671.
11 R. I. Duclos Jr. and A. Makriyannis, J. Org. Chem., 1992, 57, 6156.
12 (a) G. Cardillo, M. Orena, M. Penna, S. Sandri and C. Tomasini,
Tetrahedron, 1991, 47, 2263; (b) B. Cardillo, R. Galeazzi, G. Mobbili, M.
Orena and M. Rossetti, Tetrahedron: Asymmetry, 1996, 7, 3573; (c) M.
Yus, F. Foubelo and L. R. Falvello, Tetrahedron: Asymmetry, 1995, 6,
2081; (d) V. Rodr´ıguez, M. Sa´nchez, L. Quintero and F. Sartillo-Piscil,
Tetrahedron, 2004, 60, 10809.
Computational methods
All calculations were carried out with the Gaussian 03 suite of
programs.15 Density functional theory16 calculations (DFT) have
carried out using the B3LYP17 exchange–correlation functionals,
together with the standard 6-31G** basis set.18 The stationary
points were characterized by frequency calculations in order
to verify that minima and transition structures have zero and
one imaginary frequency, respectively. The inclusion of solvent
effects has been considered by using a relatively simple self-
consistent reaction field (SCRF)method19 based on the polarizable
continuum model (PCM) of Tomasi’s group.20 We have used
benzene as the solvent. Gaussian treats H atoms as part of a
fragment (OH, CH, SH etc.) when creating cavities in the PCM
model. In some cases (e.g. heavy atom-H bond is elongated), cavity
building fails. For this reason, we have used the cavity model that
also assigns spheres to hydrogens (radii = uff).
13 P. Karoyan and G. Chassaing, Tetrahedron: Asymmetry, 1997, 8,
2025.
14 For alternative radical procedures leading to 10 and their analytical
data, see: (a) M. Ikeda, H. Teranishi, K. Nozaki and H. Ishibashi, J.
Chem. Soc., Perkin Trans. 1, 1998, 1691; (b) B. Cardillo, R. Galeazzi,
G. Mobbili, M. Orena and M. Rossetti, Heterocycles, 1994, 38, 2663.
15 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C.
Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox,
H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.
W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J.
J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C.
Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B.
Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski,
B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.
L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.
Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision C. 02,
Gaussian, Inc., Wallingford CT, 2004.
Acknowledgements
This research was supported by the Ministry of Education and
Science (Spain)-FEDER through projects CTQ2007-61338/BQU,
CTQ2009-11027/BQU and CTQ2009-13699 and Universidad
Politecnica de Valencia (2005-PPI-06-05).
16 (a) R. G. Parr and W. Yang, Density Functional Theory of Atoms and
Molecules, Oxford University Press, New York, 1989; (b) T. Ziegler,
Chem. Rev., 1991, 91, 651.
17 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W. Yang
and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
18 W. J. Hehre, L. Radom, P. V. R. Schleyer and J. A. Pople, Ab initio
Molecular Orbital Theory, Wiley, New York, 1986.
Notes and references
19 (a) J. Tomasi and M. Persico, Chem. Rev., 1994, 94, 2027; (b) B. Y.
Simkin and I. Sheikhet, Quantum Chemical and Statistical Theory of
Solutions – A Computational Approach, Ellis Horwood, London, 1995.
20 (a) E. Cances, B. Mennunci and J. Tomasi, J. Chem. Phys., 1997, 107,
3032; (b) M. Cossi, V. Barone, R. Cammi and J. Tomasi, Chem. Phys.
Lett., 1996, 255, 327; (c) V. Barone, M. Cossi and J. Tomasi, J. Comput.
Chem., 1998, 19, 404.
1 (a) A. J. Clark, Chem. Soc. Rev., 2002, 31, 1; (b) M. Pattarozzi, F.
Roncaglia, V. Giangiordano, P. Davoli, F. Prati and F. Ghelfi, Synthesis,
2010, 694; (c) Y. Motoyama, K. Kamo, A. Yuasa and H. Nagashima,
Chem. Commun., 2010, 46, 2256.
2 (a) B. A. Seigal, C. Fajardo and M. L. Snapper, J. Am. Chem. Soc.,
2005, 127, 16329; (b) C. D. Edlin, J. Faulkner and P. Quayle, Tetrahedron
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 3180–3187 | 3187
©