J. Org. Chem., 2004, 69, 6377; (i) L. A. Paquette, R. D. Dura and
I. Modolo, J. Org. Chem., 2009, 74, 1982; (j) A. Vasudevan,
P. S. Tseng and S. W. Djuric, Tetrahedron Lett., 2006, 47, 8591;
(k) E. S. Sherman, P. H. Fuller, D. Kasi and S. R. Chemler, J. Org.
Chem., 2007, 72, 3896.
5 (a) C. Fruit and P. Muller, Helv. Chim. Acta, 2004, 87, 1607;
¨
(b) K. H. Ahn, H. H. Baek, S. J. Lee and C. W. Cho, J. Org. Chem.,
2000, 65, 7690; (c) C. Fruit and P. Muller, Tetrahedron:
Asymmetry, 2004, 15, 1019; (d) A. H. Zhou and P. R. Hanson,
Org. Lett., 2008, 10, 2951; (e) I. R. Greig, M. J. Tozer and
P. T. Wright, Org. Lett., 2001, 3, 369; (f) U. Chiacchio,
A. Corsaro, A. Rescifina, M. Bkaithan, G. Grassi, A. Piperno,
T. Privitera and G. Romeo, Tetrahedron, 2001, 57, 3425; (g) J. Lee,
Y. L. Zhong, R. A. Reamer and D. Askin, Org. Lett., 2003, 5,
4175; (h) J. Zhang, P. W. H. Chan and C.-M. Che, Tetrahedron
Lett., 2005, 46, 5403; (i) W. Zeng and S. R. Chemler, J. Am. Chem.
Soc., 2007, 129, 12948; (j) P. Desos, B. Serkiz, P. Morain,
J. Lepagnol and A. Cordi, Bioorg. Med. Chem. Lett., 1996, 6,
3003; (k) D. Enders, A. Moll and J. W. Bats, Eur. J. Org. Chem.,
2006, 1271; (l) D. N. Zalatan and J. D. Bois, J. Am. Chem. Soc.,
2008, 130, 9220; (m) T. Miura, M. Yamauchi, A. Kosaka and
M. Murakami, Angew. Chem., Int. Ed., 2010, 49, 4955;
(n) J. L. Liang, S. X. Yuan, J. S. Huang, W. Y. Yu and C. M.
Che, Angew. Chem., Int. Ed., 2002, 41, 3465; (o) J. L. Liang,
S. X. Yuan, J. S. Huang and C. M. Che, J. Org. Chem., 2004, 69,
3610.
6 (a) Y. Q. Wang and Y. G. Zhou, Synlett, 2006, 1189;
(b) Y. Q. Wang, S. M. Lu and Y. G. Zhou, J. Org. Chem., 2007,
72, 3729; (c) Y. Q. Wang, C. B. Yu, D. W. Wang, X. B. Wang and
Y. G. Zhou, Org. Lett., 2008, 10, 2071; (d) C. B. Yu, D. W. Wang
and Y. G. Zhou, J. Org. Chem., 2009, 74, 5633; (e) M. W. Chen,
Y. Duan, Q. A. Chen, D. S. Wang, C. B. Yu and Y. G. Zhou, Org.
Lett., 2010, 12, 5075.
7 (a) W. Oppolzer, M. Wills, C. Starkemann and G. Bernardinelli,
Tetrahedron Lett., 1990, 31, 4117; (b) J. M. Mao and D. C. Baker,
Org. Lett., 1999, 1, 841; (c) K. H. Ahn, C. Ham, S. K. Kim and
C. W. Cho, J. Org. Chem., 1997, 62, 7047; (d) C. J. Cobley,
E. Foucher, J. P. Lecouve, I. C. Lennon, J. A. Ramsden and
G. Thominot, Tetrahedron: Asymmetry, 2003, 14, 3431;
(e) Y. C. Chen, T. F. Wu, J. G. Deng, H. Liu, X. Cui, J. Zhu,
Y. Z. Jiang, M. C. K. Choi and A. S. C. Chan, J. Org. Chem., 2002,
67, 5301; (f) P. N. Liu, P. M. Gu, J. G. Deng, Y. Q. Tu and
Y. P. Ma, Eur. J. Org. Chem., 2005, 3221; (g) J. S. Wu, F. Wang,
Y. P. Ma, X. Cui, L. F. Cun, J. Zhu, J. G. Deng and B. L. Yu,
Chem. Commun., 2006, 1766; (h) S. Kang, J. Han, E. S. Lee,
E. B. Choi and H. K. Lee, Org. Lett., 2010, 12, 4184.
Scheme 4 Isotopic labeling experiments using D2 and CF3CH2OD.
conversion of substrate, (eqn (2), Scheme 4), 1H NMR analysis
of the hydrogenated product showed that one deuterium atom
was incorporated to the b-position. However, when incom-
plete conversion was carried out, 1H NMR analysis of the
crude hydrogenated product showed that one deuterium atom
was incorporated to the b-position, while no deuterium
atom was observed in the recovered starting material 2a
(eqn (3), Scheme 4). The above experiments confirmed that
the hydrogenation of enesulfonamides was conducted via
N-sulfonylimine intermediates, and the tautomerization
process of enesulfonamides to N-sulfonylimine intermediates
was slower than the hydrogenation.
In conclusion, we have developed an efficient and highly
enantioselective Pd-catalyzed hydrogenation of enesulfon-
amides, which led to the facile synthesis of chiral cyclic sultams
in good to excellent enantioselectivities. Further exploring the
applications of this method in asymmetric synthesis of some
biologically active compounds is currently underway.
Financial support of National Natural Science Foundation
of China (21032003 and 20872140), and National Basic
Research Program of China (2010CB833300).
Notes and references
1 (a) B. G. Main and H. Tuker, in Medicinal Chemistry,
ed. C. R. Genellin and S. M. Roberts, Academic Press, New York,
8 (a) Y. Q. Wang, S. M. Lu and Y. G. Zhou, Org. Lett., 2005, 7,
3235; (b) Y. G. Zhou, Acc. Chem. Res., 2007, 40, 1357;
(c) D. S. Wang, Q. A. Chen, W. Li, C. B. Yu, Y. G. Zhou and
X. M. Zhang, J. Am. Chem. Soc., 2010, 132, 8909.
1993, p. 187; (b) H. Groger, O. May, H. Werner, A. Menzel and
¨
J. Altenbuchner, Org. Process Res. Dev., 2006, 10, 666;
(c) R. Bloch, Chem. Rev., 1998, 98, 1407.
2 (a) L. Levy, Drugs Future, 1992, 17, 451; (b) A. Scozzafava,
T. Owa, A. Mastrolorenzo and T. C. Supuran, Curr. Med. Chem.,
2003, 10, 925; (c) R. Matsubara, T. Doko, R. Uetake and
S. Kobayashi, Angew. Chem., Int. Ed., 2007, 46, 3047.
3 (a) C. Valent, R. C. Guedes, R. Moreia, J. Iley, J. Gut and
P. J. Rosenthal, Bioorg. Med. Chem. Lett., 2006, 16, 4115;
(b) L. Zhuang, J. S. Wai, M. W. Embrey, T. E. Fisher,
M. S. Egbertson, L. S. Payne, J. P. Guare, J. P. Vacca,
D. J. Hazuda, P. J. Felock, A. L. Wolfe, K. A. Stilmock,
M. V. Witmer, G. Moyer, W. A. Schleif, L. J. Gabryelski,
Y. M. Leonard, J. J. Lynch, S. R. Michelson and S. D. Young,
J. Med. Chem., 2003, 46, 453; (c) Y. Misu and H. Togo, Org.
Biomol. Chem., 2003, 11, 1342; (d) K. H. Ahn, S. K. Kim and
C. Ham, Tetrahedron Lett., 1998, 39, 6321.
9 (a) H. Abe, H. Amii and K. Uneyama, Org. Lett., 2001, 3, 313;
(b) P. Nanayakkara and H. Alper, Chem. Commun., 2003, 2384;
(c) A. Suzuki, M. Mae, H. Amii and K. Uneyama, J. Org. Chem.,
2004, 69, 5132; (d) R. P. Laura, F. P. F. Javier, P. Sharma,
L. Velasco and A. Cabrera, Org. Lett., 2009, 11, 265;
(e) N. S. Goulioukina, G. N. Bondarenko, A. V. Bogdanov,
K. N. Gavrilov and I. P. Beletskaya, Eur. J. Org. Chem., 2009,
510; (f) Y. Tsuchiya, Y. Hamashima and M. Sodeoka, Org. Lett.,
2006, 8, 4851; (g) D. Monguchi, C. Beemelmanns, D. Hashizume,
Y. Hamashima and M. Sodeoka, J. Organomet. Chem., 2008, 693,
867; (h) Q. Yang, G. Shang, W. Z. Gao, J. G. Deng and
X. M. Zhang, Angew. Chem., Int. Ed., 2006, 45, 3832.
10 (a) Z. P. Liu, N. Shibata and Y. Takeuchi, J. Org. Chem., 2000,
65, 7583; (b) F. A. Davis, J. C. Towson, D. B. Vashi,
R. ThimmaReddy, J. P. McCauley, M. E. Harakal and
D. J. Gosciniak, J. Org. Chem., 1990, 55, 1254; (c) C. Wallinder,
4 (a) R. D. Bravo and A. A. Canepa, Synth. Commun., 2002, 1, 1342;
(b) H. Hamaguchi, S. Kosaka, H. Ohno and T. Tanaka, Angew.
Chem., Int. Ed., 2005, 44, 1513; (c) H. Hamaguchi, S. Kosaka,
H. Ohno, N. Fujii and T. Tanaka, Chem.–Eur. J., 2007, 13, 1692;
M. Botros, U. Rosenstrom, M. O. Guimond, H. Beaudry,
¨
F. Nyberg, N. Gallo-Payet, A. Hallberg and M. Alterman, Bioorg.
Med. Chem., 2008, 16, 6841; (d) J. G. Lombardino, J. Org. Chem.,
1971, 36, 1843.
(d) M. Jimenez-Hopkins and P. R. Hanson, Org. Lett., 2008, 10,
´
2223; (e) L. A. Paquette, R. D. Dura, N. Fosnaugh and
S. Marshall, J. Org. Chem., 2006, 71, 8438; (f) X. Y. Liu,
C. H. Li and C. M. Che, Org. Lett., 2006, 8, 2707; (g) S. Merten,
R. Frohlich, O. Kataeva and P. Metz, Adv. Synth. Catal., 2005,
¨
347, 754; (h) A. Padwa, A. C. Flick, C. A. Leverett and T. Stengel,
11 Selected bond lengths [A] and angles [1]: C8–N1, 1.497(4); C8–C9,
1.520(5); C9–C10, C7–C8, 1.521(4); 1.370(5); N1–S1, 1.598(3);
C6–C7–C8, 114.3(3); N1–C8–C9, 109.1(3); N1–C8–C7, 110.0(3);
C9–C8–C7, 114.6(3); N1–C8–H8,107.6; C9–C8–H8, 107.6;
C7–C8–H8,107.6.
c
5054 Chem. Commun., 2011, 47, 5052–5054
This journal is The Royal Society of Chemistry 2011