North-locked nucleotide building blocks have been de-
signed, synthesized, and incorporated into siRNAs.9
Examples are 20-O-alkylated RNAs,8b,10 20-fluoro-
RNAs,8b,10a,11 and Locked Nucleic Acids (LNA), the
latter containing a methylene bridge between the 20 oxygen
and the 40 carbon.12 In particular, LNAs have been widely
explored, anditiswell-knownthatLNA-modifiedsiRNAs
efficiently induce the RNAi process and increase the
thermodynamic and serum stability of RNA duplexes to
a great extent.13
Another candidate for introducing new features into
siRNAs without perturbing the A-type helical structure
they require for activity is the North-locked form of
nucleotide analogues based on a carbocyclic bicyclo-
[3.1.0]hexane system [methanocarba (MC) nucleosides].
Preliminary studies on the effect of North 20-deoxy-MC
nucleosides on the RNAi process have shown that these
pseudonucleosides are accepted by the RNAi machinery.14
However, the effect of a hydroxyl group at the 20 position
of any of the modified sugars, or the carbocyclic pseudo-
sugar, on the RNAi process has never been investigated.
The design and synthesis of North ribo-MC nucleosides
(Figure 1) has been reported.15 Nevertheless, these deriva-
tives have never been incorporated into RNA strands.
access to the preparation of North ribo-MC cytidine-
modified siRNAs with potential therapeutic applications.
An important challenge in the preparation of RNA
strands modified with North ribo-MC is the protection of
the 20-OH group of the pseudoribose. Preliminary studies
on the reactivity of the 20-OH group of North ribo-MC
cytidine carried out in our group have shown that the
30-OH is much more reactive than the 20-OH group (data
not shown). Thus, in contrast to what has been reported
for a great number of nucleoside derivatives,16 the direct
protection of the 20-OH group of 50-O-protected ribo-MC
cytidine derivatives with a free 30-hydroxyl group becomes
a serious problem. The attempted strategy was to employ
a 30,50-O-disiloxan diprotected intermediate with a free
20-OH group (9, Scheme 2). Our first try involved the
protection of the free 20-OH in 9 with a benzoyl group.
However, this route was abandoned due to the rapid
migration of the 20-O-benzoyl from the 20-OH to the 30-OH
after deprotection.
Scheme 1. Synthesis of Intermediate 9
Figure 1. North ribo-methanocarba cytidine monomer (CN).
Herein we describe a synthetic strategy for the prepara-
tion of conveniently 20-O-protected phosphoramidite of
North ribo-MC cytidine (CN) (Figure 1). We also describe
its incorporation into mixed 20-O-protected RNA strands
and the removal of the 20-O-protecting groups of the
RNAs in a single step. This approach permits an easy
A wide variety of 20-O-protecting groups have been
developed for RNA synthesis.16,17 For example, fluoride-
labile protecting groups such as tert-butyldimethylsilyl
(TBDMS),17a [(triisopropylsilyl)oxy]methyl (TOM),17b and
2-cyanoethoxymethyl (CEM)17c groups, or the photolabile
[(2-nitrobenzyl)oxy]methyl group17d among others.16
TBDMS and TOM are popular 20-OH protecting groups
whose phosphoramidites are commercially available.
We decided to use the cheaper 20-O-TBDMS-protected
(9) For a review, see: Watts, J. K.; Deleavey, G. F.; Damha, M. J.
Drug Discovery Today 2008, 13, 842.
(10) (a) Dowler, T.; Bergeron, D.; Tedeschi, A.-L.; Paquet, L.;
Ferrari, N.; Damha, M. J. Nucleic Acids Res. 2006, 34, 1669. (b)
Amarzguioui, M.; Holen, T.; Babaie, E.; Prydz, H. Nucleic Acids Res.
€
2003, 31, 589. (c) Czauderna, F.; Fechtner, M.; Dames, S.; Aygun, H.;
Klippel, A.; Pronk, G. J.; Giese, K.; Kaufmann, J. Nucleic Acids Res.
2003, 31, 2705.
(11) Deleavey, G. F.; Watts, J. K.; Alain, T.; Robert, F.; Kalota, A.;
Aishwarya, V.; Pelletier, J.; Gewirtz, A. M.; Sonenberg, N.; Damha,
M. J. Nucleic Acids Res. 2010, 38, 4547.
(12) (a) Obika, S. Chem. Pharm. Bull. 2004, 52, 1399. (b) Singh, S. K.;
Nielsen, P.; Koshkin, A. A.; Wengel, J. Chem. Commun. 1998, 455.
(13) (a) Braasch, D. A.; Jensen, S.; Liu, Y.; Kaur, K.; Arar, K.;
ꢀ
White, M. A.; Corey, D. R. Biochemistry 2003, 42, 7967. (b) Elmen, J.;
(16) For a review, see: Somoza, A. Chem. Soc. Rev. 2008, 37, 2668.
(17) (a) Sproat, B. S. In Oligonucleotide Synthesis: Methods and
Applications; Herdewijn, P., Ed.; Humana Press: NJ, 2005; Vol. 288, pp
17ꢀ31. (b) Pitsch, S.; Weiss, P. A.; Jenny, L.; Stutz, A.; Wu, X. Helv.
Chim. Acta 2001, 84, 3773. (c) Shiba, Y.; Masuda, H.; Watanabe, N.;
Ego, T.; Takagaki, K.; Ishiyama, K.; Ohgi, T.; Yano, J. Nucleic Acids
Res. 2007, 35, 3287. (d) Schwartz, M. E.; Breaker, R. R.; Asteriadis,
G. T.; deBear, J. S.; Gough, G. R. Bioorg. Med. Chem. Lett. 1992, 2,
1019. (e) Harstel, S. A.; Kitchen, D. E.; Scaringe, S. A.; Marsal, W. S. In
Oligonucleotide Synthesis: Methods and Applications; Herdewijn, P., Ed.;
Humana Press: NJ, 2005; Vol. 288, pp 33ꢀ49.
Thonberg, H.; Ljungberg, K.; Frieden, M.; Westergaard, M.; Xu, Y.;
Wahren, B.; Liang, Z.; Ørum, H.; Koch, T.; Wahlestedt, C. Nucleic
Acids Res. 2005, 33, 439.
(14) Terrazas, M.; Ocampo, S. M.; Perales, J. C.; Marquez, V. E.;
Eritja, R. ChemBioChem 2011, 12, 1056.
(15) (a) Kim, H. S.; Ravi, R. G.; Marquez, V. E.; Maddileti, S.;
€
Wihlborg, A.-K.; Erlinge, D.; Malmsjo, M.; Boyer, J. L.; Harden, T. K.;
Jacobson, K. A. J. Med. Chem. 2002, 45, 208. (b) Ravi, G.; Lee, K.; Ji,
X.; Kim, H. S.; Soltysiak, K. A.; Marquez, V. E.; Jacobson, K. A.
Bioorg. Med. Chem. Lett. 2001, 11, 2295.
Org. Lett., Vol. 13, No. 11, 2011
2889