LETTER
g-Alkoxy-a-keto Ester
673
led to overreduction, and instead of 5 hydroxy ester 4 was
formed.16 After several trials it was found that the desired
benzyl cleavage was possible under oxidative conditions
using 2,3-dichloro-4,5-dicyano-1,4-benzoquinone (DDQ)
as reagent. In this manner g-hydroxy keto ester 5 was ob-
tained in 45% yield. With the goal to demonstrate a func-
tional-group conversion of the a-keto moiety, g-methoxy-
a-keto ester 3a was treated with hydroxylamine
(Scheme 1). In this case, a smooth reaction occurred, and
oxime 6 was obtained in 96% yield (Scheme 1). In the
long run, the high efficiency of this process might render
it interesting for the synthesis of substituted unnatural
amino acid derivatives.
References and Notes
(1) Barton, D. H. R.; Chern, C.-Y.; Jaszberenyi, J. C.
Tetrahedron 1995, 51, 1867.
(2) (a) Ruland, Y.; Zedde, C.; Baltas, M.; Gorrichon, L.
Tetrahedron Lett. 1999, 40, 7323. (b) Ruland, Y.; Noereuil,
P.; Baltas, M. Tetrahedron 2005, 61, 8895. (c) Sugisaki,
C. H.; Ruland, Y.; Baltas, M. Eur. J. Org. Chem. 2003, 672.
(d) Filali, H.; Ballereau, S.; Chahdi, F. O.; Baltas, M.
Synthesis 2009, 251.
(3) Selig, P.; Bach, T. Synthesis 2008, 2177.
(4) (a) Penelle, J.; Verraver, S.; Raucq, P.; Marchard-Brynaert,
J. Macromol. Chem. Phys. 1995, 196, 857. (b) Barton,
D. H. R.; Chern, C.-Y.; Jaszberenyi, J. C. Tetrahedron 1995,
51, 1867.
(5) Sugimura, H.; Miura, M.; Yamada, N. Tetrahedron:
Asymmetry 1997, 8, 4089.
OH
(6) Evans, D. A.; Johnson, J. S.; Olhava, E. J. J. Am. Chem. Soc.
OEt
2000, 122, 1635.
H2, Pd/C
(7) Jensen, K. B.; Thorauge, J.; Hazell, R. G.; Jørgensen, A. K.
Angew. Chem. Int. Ed. 2001, 40, 160; Angew. Chem. 2001,
113, 164.
(8) Herrera, R. P.; Monge, D.; Martín-Zamora, E.; Fernandez,
R.; Lassaletta, J. M. Org. Lett. 2007, 9, 3303.
(9) Yao, W.; Wu, Y.; Wang, G.; Zhang, Y.; Ma, C. Angew.
Chem. Int. Ed. 2009, 48, 9713; Angew. Chem. 2009, 121,
9893.
(10) Sugimura, H.; Shigekawa, Y.; Uematsu, M. Synlett 1991,
153.
(11) Sugimura, H.; Yoshida, K. Bull. Chem. Soc. Jpn. 1992, 65,
3209.
(12) (a) Kobayashi, S. Eur. J. Org. Chem. 1999, 15.
(b) Kobayashi, S. In Lewis Acids in Organic Synthesis;
Yamamoto, H., Ed.; Wiley-VCH: Weinheim, 2000, and
references therein.
(13) For a short review on the use of copper triflate in organic
synthesis, see: Hertweck, C. J. Prakt. Chem. 2000, 342, 316.
(14) General Procedure for the Synthesis of the g-Alkoxy-a-
keto Esters
OBn
O
O
OEt
4
5
OH
O
N
O
DDQ
OEt
3d
O
OH
O
OMe
O
OMe
OEt
OEt
H2N-OH
O
6
3a
Scheme 1 Conversions of keto esters 3d and 3a
In summary, we developed a simple catalytic approach to-
wards g-alkoxy-a-keto esters, which proceeds under mild
conditions in reasonable reaction times. No workup is re-
quired, and analytically pure products are obtained by
simple column chromatography of the crude products.
Various functional groups are tolerated, and depending on
the substitution pattern good to excellent yields can be
achieved. Straightforward functional-group conversions
allow to access g-hydroxy-a-keto esters and to address the
a-keto group. Our current studies have the goal to develop
a catalytic asymmetric version of this reaction and to find
further applications of the densely functionalized prod-
ucts in organic synthesis.
Cu(OTf)2 (0.04 mmol) was dissolved in dry CH2Cl2 (2 mL)
and cooled to 0 °C. The acetal (0.4 mmol) and the acrylic
ester (0.6 mmol) were added, and the reaction was monitored
by TLC. After consumption of the starting material, the
crude reaction mixture was directly subjected to column
chromatography to yield the pure products 3a–o.
Ethyl 4-Methoxy-4-phenyl-2-oxobutyrate (3a)17
1H NMR (400 MHz, CDCl3): d = 1.36 (t, J = 7.14 Hz, 3 H,
CH3), 2.98 (dd, J = 16.8, 4.4 Hz, 1 H, CH2), 3.20 (s, 3 H,
OCH3), 3.41 (dd, J = 16.8, 9.2 Hz, 1 H, CH2), 4.31 (q,
J = 7.14 Hz, 2 H, CH2), 4.73 (dd, J = 9.2, 4.4 Hz, 1 H, CH),
7.29–7.40 (m, 5 H, Ar) ppm. 13C NMR (100 MHz, CDCl3):
d = 13.9 (CH3), 47.5 (CH2), 56.7 (OCH3), 62.4 (CH2), 78.9
(CH), 126.4 (Ar), 128.0 (Ar), 128.5 (Ar), 140.1 (Ar), 160.6
(CO), 191.8 (CO) ppm.
Supporting Information for this article is available online at
(15) Watahaki, T.; Akabane, Y.; Mori, S.; Oriyama, T. Org. Lett.
2003, 5, 3045.
(16) (a) Ito, T.; Ishino, Y.; Mizuno, T.; Ishikawa, A.; Kobayashi,
J. Synlett 2002, 2116. (b) Ramachandran, P. V.; Pitre, S.;
Brown, H. C. J. Org. Chem. 2002, 67, 5315. (c) Tamaru,
Y.; Nakamura, T.; Sakaguchi, M.; Ochiai, H.; Yoshida, Z.
J. Chem. Soc., Chem. Commun. 1988, 610.
Acknowledgment
This study was supported by the Fonds der Chemischen Industrie.
Initial discussions with Dr. A. Torrens (Esteve) were stimulating for
the project.
(17) Watanabe, M.; Kobayashi, H.; Yoneda, Y. Chem. Lett. 1995,
163.
Synlett 2011, No. 5, 671–673 © Thieme Stuttgart · New York