N. Nerngchamnong et al. / Tetrahedron Letters 52 (2011) 2914–2917
2917
Supplementary data
Supplementary data (additional 1H and 13C NMR spectra of 1
and 2, and results of electrochemical studies) associated with this
article can be found, in the online version, at doi:10.1016/
References and notes
1. (a) Beer, P. D. Chem. Commun. 1996, 689–696; (b) Suksai, C.; Tuntulani, T. Chem.
ˇ
Soc. Rev. 2003, 32, 192–202; (c) Martínez-Mánez, R.; Sancenón, F. Chem. Rev.
2003, 103, 4419–4476.
2. Sessler, J. L.; Kim, S. K. Chem. Soc. Rev. 2010, 39, 3784–3809.
3. (a) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486–516; (b) Gale, P. A.
Coord. Chem. Rev. 2003, 240, 191–221; (c) Beer, P. D.; Hayes, E. J. Coord. Chem.
Rev. 2003, 240, 167–189; (d) Mahoney, J. M.; Nawaratna, G. U.; Beatty, A. M.;
Duggan, P. J.; Smith, B. D. Inorg. Chem. 2004, 43, 5902–5907; (e) Gale, P. A.;
García-Garrido, S. E.; Garric, J. Chem. Soc. Rev. 2008, 37, 151–190; (f) Lankshear,
M. D.; Dudley, I. M.; Chan, K. M.; Cowley, A. R.; Santos, S. M.; Fejix, V.; Beer, P. D.
Chem. Eur. J. 2008, 14, 2248–2263; (g) Kim, S. K.; Sessler, J. L.; Gross, D. E.; Lee,
C.-H.; Kim, J. S.; Lynch, V. M.; Delmau, L. H.; Hay, B. P. J. Am. Chem. Soc. 2010,
132, 5827–5836.
4. Suksai, C.; Leeladee, P.; Jainuknan, D.; Tuntulani, T.; Muangsin, N.; Chailapakul,
O.; Kongsaeree, P.; Pakavatchai, C. Tetrahedron Lett. 2005, 46, 2765–
2769.
5. (a) Tomapatanaget, B.; Tuntulani, T. Tetrahedron Lett. 2001, 42, 8105–8109; (b)
Tomapatanaget, B.; Tuntulani, T.; Chailapakul, O. Org. Lett. 2003, 5, 1539–
1542.
Figure 3. Square-wave voltammograms of free receptor 1 and [1ÁNa+] with chloride
anions in 40% CH3CN/CH2Cl2 with 0.1 M TBAPF6 at a scan rate of 100 mV/s.
The electrochemical sensing of Na+ co-bound receptors was also
investigated by voltammetry. Table 2 shows cathodic shifts of Fc/
Fc+ redox couples upon addition of chloride and acetate to the
co-bound Na+ complexes of 1 and 2. It can be clearly seen from Fig-
ure 3 and Table 2 that the complex [1ÁNa+] gave a larger
DE than
the free form 1 upon addition of ClÀ. Therefore, [1ÁNa+] provided
‘positive co-operative electrochemical sensing’. We expected that
the suitable distance between the two positive ions 1+ and Na+
with the preorganization of the doubly positive charge [1+ÁNa+]
and the electrostatic attraction of anions led to a greater shift in
the potential of the Fc/Fc+ redox couples. These results indicated
that the degree of anion electrochemical sensing increases in the
electrochemically-oxidized Na+ co-bound receptor [1+ÁNa+] con-
taining double positive charges as compared to reduced form
[1ÁNa+]. However, the co-bound [2ÁNa+] complex demonstrated
‘negative co-operative electrochemical sensing’ for acetate anions.
It can be seen that the longer distance between the two positive
charges of co-bound Na+ and Fc+, resulting from the topology of
the ligand, may decrease the anion association ability.
6. Sukwattanasinitt, M.; Rojanathanes, R.; Tuntulani, T.; Sritana-Anant, Y.;
Ruangpornvisuti, V. Tetrahedron Lett. 2001, 42, 5291–5293.
7. Knobloch, F. W.; Rauscher, W. H. J. Polym. Sci. 1961, 54, 651–656.
8. Meta-isomer 1: 1H NMR (400 MHz, CDCl3, ppm): d, 8.77 (t, 2H, J = 6.4 Hz, ArNH),
7.72 (s, 2H, ArH), 7.28 (s, 2H, ArH), 7.18 (t, 2H, J = 8.0 Hz, ArH), 7.08 (s, 4H, ArH),
6.63 (d, 2H, J = 8.0 Hz, ArH), 6.48 (s, 4H ArH), 4.64 (s, 8H, –OCH2CH2O–), 4.68 (s,
4H, FcH), 4.47 (s, 4H FcH), 4.37 (s, 4H, –OCH2COOR), 3.96 (q, 4H, J = 7.2 Hz,
CH3CH2O–), 4.53 (d, 4H, J = 12.8 Hz, ArCH2Ar), 3.14 (d, 4H, J = 12.8 Hz,
ArCH2Ar), 1.30 (s, 18H, tert-butyl), 1.09 (t, 6H, J = 6.8 Hz, CH3CH2OCO–), 0.81
(s, 18H, tert-butyl); 13C NMR (100 MHz, CDCl3, ppm): d 170.5, 170.0, 169.0,
159.8, 155.5, 152.2, 144.8, 139.7, 135.1, 131.7, 129.5, 125.6, 124.9, 112.3, 111.6,
105.3, 79.0, 73.2, 71.9, 71.0, 68.8, 60.6, 51.2, 33.8, 31.1, 13.9. Elemental
analysis: Anal. Calcd for C80H92FeO12N2: C, 72.26; H, 6.98; N, 2.11. Found: C,
72.25; H, 6.94; N, 2.14; ESI m/z: calcd 1329.46; found 1351.187 [M+Na+].
9. Para-isomer 2: 1H NMR (400 MHz, CDCl3, ppm): d 7.37 (s, 2H, ArNH), 7.21 (d,
4H, J = 8.8 Hz, ArH), 6.95 (s, 4H, ArH), 6.68 (s, 4H, ArH), 6.75 (d, 4H, J = 8.8 Hz,
ArH), 4.89 (s, 4H, FcH), 4.69 (s, 4H, FcH), 4.46 (s, 4H, –OCH2COOR), 4.39 (s, 8H, –
OCH2CH2O–), 4.20 (q, 4H, J = 7.1 Hz, CH3CH2O–), 4.65 (d, 4H, J = 12.8 Hz,
ArCH2Ar), 3.24 (d, 4H, J = 12.8 Hz, ArCH2Ar), 1.28 (t, 6H, J = 7.2 Hz, CH3CH2OCO–
), 1.19 (s, 18H, tert-buyl), 0.99 (s, 18H, tert-buyl); 13C NMR (100 MHz, CDCl3,
ppm): d 170.2, 166.8, 155.6, 154.1, 152.3, 145.1, 134.3, 132.7, 130.7, 125.1,
122.0, 114.0, 79.2, 71.3, 69.7, 60.9, 34.0, 31.3, 14.4. Elemental analysis: Anal.
Calcd for C80H92FeO12N2: C, 72.26; H, 6.98; N, 2.11. Found: C, 72.24; H, 6.97; N,
2.15; ESI m/z: calcd 1329.46; found 1351.452 [M+Na+].
10. Suksai, C.; Leeladee, P.; Jennings, C.; Tuntulani, T.; Kongsaeree, P. J. Chem.
Crystallogr. 2008, 38, 363–368.
11. Macomber, R. S. J. Chem. Educ. 1992, 69, 375–378.
12. Hynes, M. J. J. Chem. Soc., Dalton Trans. 1993, 311–312.
13. Togni, A.; Hayashi, T. Ferrocene; VCH: New York, 1995.
14. (a) Medina, J. C.; Goodnow, T. T.; Bott, S.; Atwood, J. L.; Kaifer, A. E.; Gokel, G. W.
J. Chem. Soc., Chem. Commun. 1991, 290–292; (b) Hall, C. D.; Chu, S. Y. F. J.
Organomet. Chem. 1995, 498, 221–228.
15. Beer, P. D.; Gale, P. A.; Chen, G. Z. J. Chem. Soc., Dalton Trans. 1999, 1897–1910.
16. Miller, S. R.; Gustowski, D. A.; Chen, Z. H.; Gokel, G. W.; Echegoyen, L.; Kaifer, A.
E. Anal. Chem. 1988, 60, 2021–2024.
In conclusion, we have successfully synthesized heteroditopic
receptors 1 and 2 derived from p-tert-butyl-calix[4]arene. Both
compounds showed a ‘turn on’ binding with BrÀ and IÀ employing
Na+ as a ‘switch’. We also showed that the topology of compounds
1 and 2 played a crucial role in the electrochemical sensing abilities
toward anions. The meta-isomer 1 possessed a suitable cationic
cavity for Na+ co-ordination, whereas the para-isomer 2 provided
a larger cationic cavity in which Na+ probably sat deeply in the cav-
ity. Therefore, the incoming anion would interact with the positive
charge of the co-bound cation complexes [1ÁNa+] and [2ÁNa+] to a
different extent. Complex [1ÁNa+] showed ‘positive co-operative
electrochemical sensing’ for chloride and acetate anions, whereas
complex [2ÁNa+] gave a negative result for acetate. However, the
free-form of para-isomer 2 was well-suited for electrochemical
sensing of acetate anions. Therefore, the topology of the ligands
and the presence of metal ions were able to differentiate the anion
binding abilities of the heteroditopic receptors 1 and 2.
17. Bourgel, C.; Boyd, A. S. F.; Cooks, G.; de Cremires, H. A.; Dulairoir, F. M. A.;
Rotello, V. M. Chem. Commun. 2001, 1954–1955.
18. Beer, P. D.; Hesek, D.; Nam, K. C. Organometallics 1999, 18, 3933–3943.
19. (a) Wopshall, R. H.; Shain, I. Anal. Chem. 1967, 39, 1514–1527; (b) Chen, Z.;
Graydon, A. R.; Beer, P. D. J. Chem. Soc., Faraday Trans. 1996, 92, 97–102; (c)
Beer, P. D.; Graydon, A. R.; Johnson, A. O. M.; Smith, D. K. Inorg. Chem. 1997, 36,
2112–2117; (d) Stone, D. L.; Smith, D. K. Polyhedron 2003, 22, 763–768.
Acknowledgment
Financial support from The Thailand Research Fund
(RTA5380003) is gratefully acknowledged.