Grubbs Catalyst, Cross-metathesis, Wittig Olefination
J. Chin. Chem. Soc., Vol. 58, No. 2, 2011 33
and instead the reaction resulted in recovery of the starting
materials. Next, the CM reaction was carried out in toluene
either at room temperature or under refluxing conditions,
but again only the starting materials could be recovered.11
Subsequently, the unsaturated acid 7 was esterified to
give methyl (3S)-3-methylhex-5-enate (3) in good yield
(98%). We then performed CM with compound 2 in CH2Cl2
in a sealed-tube at 50 ºC. The desired C1-C9 fragment 1
was successfully obtained after 24 hours in 91% yield. A
large coupling constant (15.2 Hz) for the olefinic protons
confirmed a transoid geometry of the double bond that is
consistent with the predicted structure of the C1-C9 frag-
ment of the 7,8-O-isopropylidene protected iriomoteolide
3a derivative. The physical and spectral data of these com-
pounds were in agreement with those reported in the litera-
ture.4-5,12
39.3, 30.0, 27.1, 26.9, 29.7, 19.5, 19.2; MS (FAB): m/z 509
(M-H)+; Anal. calcd for C30H42O5Si: C, 70.75; H, 8.19.
Found: C, 71.05; H, 8.07.
ACKNOWLEDGMENTS
We would like to thank the National Science Council
of the Republic of China (NSC 99-2113-M-468-001) and
Asia University for financial support. We thank the Depart-
ment of Chemistry, National Chung-Hsing University, Tai-
chung, Taiwan, R.O.C. for analyzing the NMR spectra.
REFERENCES AND NOTES
1. Oguchi, K.; Tsuda, M.; Iwamoto, R.; Okamoto, Y.; Kobayashi,
J.; Fukushi, E.; Kawabata, J.; Ozawa, T.; Masuda, A.;
Kitaya, Y.; Omasa, K. J. Org. Chem. 2008, 73, 1567-1570.
2. Cribiu, R.; Jager, C.; Nevado, C. Angew. Chem. Int. Ed.
2009, 48, 8780-8783.
3. Reddy, C. R.; Dharmapuri, G.; Rao, N. N. Org. Lett. 2009,
11, 5730-5733.
CONCLUSION
In summary, a short and efficient route is presented
for the stereoselective synthesis of the (5E)-(3S,7S,8S)-
C1-C9 fragment of the 7,8-O-isopropylidene protected
iriomoteolide 3a derivative in six steps with 70% overall
yield from commercially available (S)-(-)-citronellic acid.
We are actively pursuing the synthesis of other fragments
of iriomoteolide 3a, which will be reported in due course.
4. Uchida, K.; Kato, K.; Akita, H. Synthesis 1999, 1678-1686.
5. Martin, S. F.; Chen, H.-J.; Yang, C.-P. J. Org. Chem. 1993,
58, 2867-2873.
6. (a) Martín, D. D.; Marcos, I. S.; Basabe, P.; Romero, R. E.;
Moro, R. F.; Lumeras, W.; Rodríguez, L.; Urones, J. G. Syn-
thesis, 2001, 1013-1022. (b) Lim, S. H.; Curtis, M. D.; Beak,
P. Org. Lett. 2001, 3, 711-714. (c) Barma, D. K.;
Brandyopadhyay, A.; Capdevila, J. H.; Falck, J. R. Org. Lett.
2003, 5, 4755-4757. (d) Hsu, M.-A.; Chow, T. J. J. Chin.
Chem. Soc. 2005, 52, 811-818.
EXPERIMENTAL
Olefin cross-metathesis of alkene 2 and methyl ester
3
7. Demuth, M.; Ritterskamp, P.; Weigt, E.; Schaffner, K. J. Am.
Chem. Soc. 1986, 108, 4149-4154.
The Grubbs 2nd generation catalyst (0.086 g, 10
mol%) was added to a pressure-resistant glass tube contain-
ing alkene 2 (0.396 g, 1 mmol) and methyl ester 3 (0.142 g,
1 mmol) in CH2Cl2 (3 mL). The reaction tube was purged
with N2 for 5 min. The tube was then sealed and heated to
50 ºC for 24 h. After cooling to room temperature, the sol-
vent was removed in vacuo to obtain a yellowish liquid
(0.74 g). The product was purified by flash column chro-
matography eluting with hexane/EtOAc (10:1) to afford 1
(0.462 g, 91%) as a colorless liquid. [a]D = -9.14 (c 1.28,
CHCl3); IR (neat) 2985, 2956, 2931, 2858, 1738, 1589,
1459, 1429, 1369, 1112 cm-1; 1H NMR (400 MHz, CDCl3)
d 7.70-7.66 (m, 4H), 7.41-7.26 (m, 6H), 5.71-5.64 (m, 1H),
5.45 (dd, J = 15.2, 7.6 Hz, 1H), 4.44 (t, J = 7.8 Hz, 1H),
3.84-3.61 (m, 3H), 3.67 (s, 3H), 2.33-2.31 (m, 1H), 2.12-
1.93 (m, 4H), 1.44 (s, 6H), 1.06 (s, 9H), 0.90 (d, J = 6.4 Hz,
3H); 13C NMR (100 MHz, CDCl3) d 173.3, 135.5, 133.1,
129.6, 129.4, 127.6, 108.7, 81.3, 78.5, 62.5, 51.3, 40.8,
8. Olah, G. A.; Narang, S. C.; Balaram Gupta, B. G.; Malhotra,
R. J. Org. Chem. 1979, 44, 1247-1251.
9. Mandel, A. L.; Bellosta, V.; Curran, D. P.; Cossy, J. Org.
Lett. 2009, 11, 3282-3285.
10. (a) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R.
H. J. Am. Chem. Soc. 2003, 125, 11360-11370. (b) Chang,
Y.-K.; Lo, H.-J.; Yan, T.-H. Org. Lett. 2009, 11, 4278-4281.
(c) Chang, Y.-K.; Lo, H.-J.; Yan, T.-H. J. Chin. Chem. Soc.
2010, 57, 24-27.
11. Chang, C.-W.; Chen, Y.-N.; Adak, A. K.; Lin, K.-H.; Tzou,
D. M.; Lin, C.-C. Tetrahedron 2007, 63, 4310-4318.
12. (((4S,5S)-2,2-Dimethyl-5-vinyl-1,3-dioxolan-4-yl)meth-
oxy)(tert-butyl)diphenylsilane (2): [a]D = +1.05 (c 1.14,
CHCl3); IR (neat) 3071, 2932, 2858, 1647, 1471, 1427, 1371,
1
1241, 1138 cm-1; H NMR (400 MHz, CDCl3) d 7.71-7.67
(m, 4H), 7.45-7.37 (m, 6H), 5.89-5.80 (m, 1H), 5.34 (dd, J =
17.2, 1.6 Hz, 1H), 5.22 (dd, J = 7.6, 1.6 Hz, 1H), 4.47-4.44
(m, 1H), 3.85-3.73 (m, 3H), 1.44 (s, 6H), 1.06 (s, 9H); 13C
NMR (100 MHz, CDCl3) d 135.6, 133.2, 129.7, 129.6,
127.6, 118.1, 109.0, 81.2, 79.1, 62.9, 27.0, 26.9, 26.7, 19.2;