unfortunately displayed significant limitations. For in-
stance, (i) dialkyl-substituted alkynes gave complicated
reaction mixtures, (ii) superstoichiometric amounts (2.2
equiv) of the terminal oxidant Cu(OAc)2 proved mandatory,
and (iii) the use of acrylamides bearing electron-deficient
N-substituents resulted in unsatisfactory selectivities. Based
on mechanistic studies on carboxylate assistance in
ruthenium-catalyzed CꢀH bond transformations,10,11
we recently devised a first ruthenium-catalyzed12 oxidative13,14
annulation process through CꢀH bond cleavages.15 Since
inexpensive16 ruthenium complexes have thus far been
underexplored for oxidative annulation processes, we
became interested in probing their use for an oxidative
synthesis of 2-pyridones through cleavages of CꢀH and
NꢀH bonds, on which we wish to report herein. Impor-
tantly, the inexpensive ruthenium catalyst displayed a
significantly improved substrate scope as compared to
the previously reported rhodium9 complex, which inter alia
set the stage for high-yielding 2-pyridone syntheses with
dialkyl-substituted alkynes and acrylamides with electron-
deficient N-substituents.
At the outset of our studies, we optimized reaction
conditions for the oxidative annulation of alkyne 2a
by acrylamide 1a for the synthesis of 2-pyridone 3aa.
Optimal reaction conditions involved the use of Cu(OAc-
)2•H2O as the terminal oxidant in t-AmOH as the solvent.
Other sacrificial oxidants, such as benzoquinone (0%), air
(5%), or AgOAc (65%), provided less satisfactory results.
Representative alternative solvents, including DME
(<5%) or MeOH (44%), gave inferior yields of the desired
product 3aa. Notably, 1 equiv of the terminal oxidant
Cu(OAc)2•H2O turned out to be sufficient, which compares
favorably with a rhodium-catalyzed9 process that required
superstoichiometric amounts of the oxidant (2.2 equiv).
With optimized reaction conditions in hand, we ex-
plored the scope of the ruthenium-catalyzed pyridone
(8) For important recent progress in catalyzed oxidative annulation
reactions, see: [Rh] (a) Muralirajan, K.; Parthasarathy, K.; Cheng, C.-H.
Angew. Chem., Int. Ed. 2011, 50, 4169–4172. (b) Huestis, M. P.; Chan,
L.; Stuart, D. R.; Fagnou, K. Angew. Chem., Int. Ed. 2011, 50, 1338–
1341. (c) Wang, F.; Song, G.; Du, Z.; Li, X. J. Org. Chem. 2011, 76,
2926–2932. (d) Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F. J. Am.
Chem. Soc. 2011, 133, 2154–2156. (e) Umeda, N.; Hirano, K.; Satoh, T.;
Shibata, N.; Sato, H.; Miura, M. J. Org. Chem. 2011, 76, 13–24.
(f) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem.
Soc. 2010, 132, 18326–18339. (g) Too, P. C.; Wang, Y.-F.; Chiba, S. Org.
Lett. 2010, 12, 5688–5691. (h) Wang, F.; Song, G.; Li, X. Org. Lett. 2010,
12, 5430–5433. (i) Chen, J.; Song, G.; Pan, C.-L.; Li, X. Org. Lett. 2010,
12, 5426–5429. (j) Rakshit, S.; Patureau, F. W.; Glorius, F. J. Am. Chem.
Soc. 2010, 132, 9585–9587. (k) Morimoto, K.; Hirano, K.; Satoh, T.;
Miura, M. Org. Lett. 2010, 12, 2068–2071. (l) Guimond, N.; Fagnou, K.
J. Am. Chem. Soc. 2009, 131, 12050–12051. (m) Fukutani, T.; Umeda,
N.; Hirano, K.; Satoh, T.; Miura, M. Chem. Commun. 2009, 5141–5143.
(n) Umeda, N.; Tsurugi, H.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed.
2008, 47, 4019–4022. (o) Li, L.; Brennessel, W. W.; Jones, W. D. J. Am.
Chem. Soc. 2008, 130, 12414–12419. [Cu] (p) Bernini, R.; Fabrizi, G.;
Sferrazza, A.; Cacchi, S. Angew. Chem., Int. Ed. 2009, 48, 8078–8081.
[Pd] (q) Shi, Z.; Cui, Y.; Jiao, N. Org. Lett. 2010, 12, 2908–2911. (r) Wu,
J.; Cui, X.; Mi, X.; Li, Y.; Wu, Y. Chem. Commun. 2010, 46, 6771–6773.
(s) Shi, Z.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48,
7895–7898. (t) Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.; Jiao,
N. Angew. Chem., Int. Ed. 2009, 48, 4572–4576 and references cited
therein. For related studies, see: (u) Tan, Y.; Hartwig, J. F. J. Am. Chem.
Soc. 2010, 132, 3676–3677. (v) Houlden, C. E.; Bailey, C. D.; Ford, J. G.;
Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem.
Soc. 2008, 130, 10066–10067.
Scheme 1. Scope of the Ruthenium-Catalyzed Oxidative An-
nulation of Alkyne 2aa
(9) Su, Y.; Zhao, M.; Han, K.; Song, G.; Li, X. Org. Lett. 2010, 12,
5462–5465.
(10) (a) Ackermann, L.; Vicente, R.; Potukuchi, H. K.; Pirovano, V.
Org. Lett. 2010, 12, 5032–5035. (b) Ackermann, L. Pure Appl. Chem.
2010, 82, 1403–1413. (c) Ackermann, L. Chem. Commun. 2010, 46, 4866–
4877. (d) Ackermann, L.; Hofmann, N.; Vicente, R. Org. Lett. 2011, 13,
1875–1877.
(11) Ackermann, L. Chem. Rev. 2011, 111, 1315–1345.
(12) A review on ruthenium-catalyzed CꢀH bond arylations:
Ackermann, L.; Vicente, R. Top. Curr. Chem. 2010, 292, 211–229.
(13) For pioneering ruthenium-catalyzed cross-dehydrogenative
coupling with alkenes, see: (a) Weissman, H.; Song, X.; Milstein, D.
J. Am. Chem. Soc. 2001, 123, 337–338. (b) Ueyama, T.; Mochida, S.;
Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 706–
708. For oxidative couplings of boronic acids with alkenes, see:
(c) Farrington, E. J.; Barnard, C. F. J.; Rowsell, E.; Brown, J. M. Adv.
Synth. Catal. 2005, 347, 185–195. (d) Farrington, E. J.; Brown, J. M.;
Barnard, C. F. J.; Rowsell, E. Angew. Chem., Int. Ed. 2002, 41, 169–171.
(14) For an example of carboxylate-assisted ruthenium-catalyzed
dehydrogenative CꢀH bond functionalizations, see: Ackermann, L.;
ꢀ
Novak, P.; Vicente, R.; Pirovano, V.; Potukuchi, H. K. Synthesis 2010,
2245–2253.
a Reaction conditions: 1 (1.0 mmol), 2a (0.5 mmol), [RuCl2(p-cym-
ene]2 (5.0 mol %), Cu(OAc)2•H2O (0.5 mmol), t-AmOH (2.0 mL),
120 °C, 20 h; isolated yields. b Cu(OAc)2•H2O (1.0 mmol), 100 °C, 48 h.
(15) Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew. Chem., Int.
Ed. 2011, 50, DOI: 10.1002/anie201101943.
(16) [Cp*RhCl2]2: 2545 h versus [RuCl2(p-cymene)]2: 257 h (5.0 g,
Sigma-Aldrich, 2011).
Org. Lett., Vol. 13, No. 12, 2011
3279