Communication
Cazin, S. P. Nolan, Catal. Sci. Technol. 2013, 3, 912–926; for Zn, see: h) S.
Budagumpi, S. Endud, Organometallics 2013, 32, 1537–1562.
[3] a) L. Oehninger, R. Rubbiani, I. Ott, Dalton Trans. 2013, 42, 3269–3284;
b) R. Visbal, M. C. Gimeno, Chem. Soc. Rev. 2014, 43, 3551–3574; c) F.
Lazreg, C. S. J. Cazin, N-Heterocyclic Carbenes (Ed.: S. P. Nolan), Wiley-VCH,
Weinheim, Germany, 2014, p. 173–197; d) S. B. Aher, P. N. Muskawar, K.
Thenmozhi, P. R. Bhagat, Eur. J. Med. Chem. 2014, 81, 408–419.
[4] a) R. H. Crabtree, Coord. Chem. Rev. 2013, 257, 755–766; b) J. C. Bernham-
mer, G. Frison, H. V. Huynh, Chem. Eur. J. 2013, 19, 12892–12905.
[5] G. Guisado-Barrios, J. Bouffard, B. Donnadieu, G. Bertrand, Angew. Chem.
Int. Ed. 2010, 49, 4759–4872; Angew. Chem. 2010, 122, 4869–4872.
[6] a) H. Struthers, T. L. Mindt, R. Schibli, Dalton Trans. 2010, 39, 675–696; b)
S. D. González, Catal. Sci. Technol. 2011, 1, 166–178; c) J. E. Hein, V. V.
Fokin, Chem. Soc. Rev. 2010, 39, 1302–1315.
tallography. Theoretical calculations showed that one-electron
reduction of the molecule is energetically possible, and this is
indicative of amphoteric compounds with both electron-donor
and electron-acceptor properties. That was supported by the
electron paramagnetic and electronic spectra of product 3a in
the presence of an excess amount of a strong base. A rare ex-
ample of a 1,2,3-triazole-derived carbene complex of iron(II), a
pincer-type cationic complex, was obtained by reaction of iron
chloride with in situ generated triazolylidene 3b. Further stud-
ies on transition-metal complexes with these carbenes for cata-
lytic applications are ongoing.
[7] a) K. F. Donnelly, A. Petronilho, M. Albrecht, Chem. Commun. 2013, 49,
1145–1159; b) B. Schulze, U. S. Schubert, Chem. Soc. Rev. 2014, 43, 2522–
2571; c) S. Hohloch, F. L. Duecker, M. van der Meer, B. Sarkar, Molecules
2015, 20, 7379–7395; d) D. Mendoza-Espinosa, R. Gonzalez-Olvera, G. E.
Negrón-Silva, D. Angeles-Beltrán, O. R. Suárez-Castillo, A. Álvarez-Hernán-
dez, R. Santillan, Organometallics 2015, 34, 4529–4542; e) S. Modak, M. K.
Gangwar, M. N. Rao, M. Madasu, A. C. Kalita, V. Dorcet, M. A. Shejale, R. J.
Butcher, P. Ghosh, Dalton Trans. 2015, 44, 17617–17628; f) A. Mohan, V.
Ramkumar, S. Sankararaman, J. Organomet. Chem. 2015, 799–800, 115–
121; g) T. Mitsui, M. Sugihara, Y. Tokoro, S. Fukuzawa, Tetrahedron 2015,
71, 1509–1514; h) K. F. Donnelly, C. Segarra, L. Shao, R. Suen, H. Müller-
Bunz, M. Albrecht, Organometallics 2015, 34, 4076–4084; i) B. Suresh-
babu, V. Ramkumar, S. Sankararaman, J. Organomet. Chem. 2015, 799–
800, 232–238; j) B. Bagh, A. M. McKinty, A. J. Lough, D. W. Stephan, Dalton
Trans. 2015, 44, 2712–2723; k) R. Maity, M. van der Meer, S. Hohloch, B.
Sarkar, Organometallics 2015, 34, 3090–3096; l) A. Dasgupta, V. Ram-
kumar, S. Sankararaman, RSC Adv. 2015, 5, 21558–21561; m) T. V. Q.
Nguyen, W. Yoo, S. Kobayashi, Angew. Chem. Int. Ed. 2015, 54, 9209–
9212; Angew. Chem. 2015, 127, 9341–9344; n) S. N. Sluijter, L. J. Jongkind,
C. J. Elsevier, Eur. J. Inorg. Chem. 2015, 2948–2955; o) A. Bolje, S. Hohloch,
M. van der Meer, J. Košmrlj, B. Sarkar, Chem. Eur. J. 2015, 21, 6756–6764.
[8] B. Schulze, D. Escudero, C. Friebe, R. Siebert, H. Görls, U. Köhn, E. Altuntas,
A. Baumgaertel, M. D. Hager, A. Winter, B. Dietzek, J. Popp, L. González,
U. S. Schubert, Chem. Eur. J. 2011, 17, 5494–5498.
Experimental Section
Preparation of 3a: Typically, a Schlenk tube was charged with 2a
(100 mg, 0.136 mmol), NaOtBu (29.7 mg, 0.306 mmol), and diethyl
ether (0.80 mL) in a glovebox. The mixture was stirred for 1 h, and
then, the volatiles were removed under reduced pressure. After ex-
traction with toluene, the solution was filtered through Celite. The
solvent was removed under reduced pressure to give 3a as a pur-
1
ple-white solid (71.0 mg, 80 %). H NMR (400 MHz, C6D6): δ = 8.83
(d, J = 8.0 Hz, 2 H, Py-H), 7.33 (t, J = 8.0 Hz, 2 H, Pro-Ph), 7.27 (t, J =
7.6 Hz, 1 H, Py-H), 7.21 (d, J = 8.0 Hz, 4 H, Pro-Ph), 3.77 (s, 6 H, Trz-
H), 2.92 (sept, J = 7.2 Hz, 4 H, Pro-Ph), 1.30 (d, J = 6.8 Hz, 12 H, Pro-
Ph), 1.22 (d, J = 6.8 Hz, 12 H, Pro-Ph) ppm. 13C NMR (100 MHz,
C6D6): δ = 206.78 (carbene), 151.37, 147.11, 145.59, 139.54, 137.60,
129.95, 124.26, 123.84, 37.79, 28.96, 24.26, 24.10 ppm. MS (ESI-TOF):
m/z = 562.37 [M + H]+ (C35H43N7·H+ requires 562.45).
Acknowledgments
This work was supported by the Japan Society for the Promo-
tion of Science (Grant-in-Aid for Scientific Research, 22550104
and 25410123) and a fund from the Central Research Institute
of Fukuoka University (grant number 117106).
[9] D. I. Bezuidenhout, G. Kleinhans, G. Guisado-Barrios, D. C. Liles, G. Ung,
G. Bertrand, Chem. Commun. 2014, 50, 2431–2433.
[10] A. A. Danopoulus, S. Wiston, W. B. Motherwell, Chem. Commun. 2002,
1376–1377.
[11] a) G. Guisado-Barrios, J. Bouffard, B. Donnadieu, G. Bertrand, Organome-
tallics 2011, 30, 6017–6021; b) J. Bouffard, B. K. Keitz, R. Tonner, G. Guis-
ado-Barrios, G. Frenking, R. H. Grubbs, G. Bertrand, Organometallics 2011,
Keywords: Carbene ligands · Pincer-type ligands · Iron ·
Nitrogen heterocycles · Radical ions
[12] CCDC 1440829 (for 3a) and 1440830 (for 4) contain the supplementary
[13] a) K. Kuwata, T. Ogawa, K. Hirota, Bull. Chem. Soc. Jpn. 1961, 34, 291–
292; b) V. Kalyanaraman, C. N. R. Rao, M. V. George, J. Chem. Soc. B 1971,
2406–2409; c) T. R. Dugan, E. Bill, K. C. MacLeod, G. J. Christian, R. E.
Cowley, W. W. Brennessel, S. Ye, F. Neese, P. L. Holland, J. Am. Chem. Soc.
2012, 134, 20352–20364.
[1] a) D. Martin, M. Melaimi, M. Soleilhavoup, G. Bertrand, Organometallics
2011, 30, 5304–5313; b) S. Naumann, M. R. Buchmeiser, Catal. Sci. Tech-
nol. 2014, 4, 2466–2479; c) M. N. Hopkinson, C. Richter, M. Schedler, F.
Glorius, Nature 2014, 510, 485–496; d) Y. Wang, G. H. Robinson, Inorg.
Chem. 2014, 53, 11815–11832; e) M. C. Jahnke, F. E. Hahn, Chem. Lett.
2015, 44, 226–237.
[2] Some recent reviews on 4d-transition-metal catalysts; for Pd, see: a) C.
Valente, S. Çalimsiz, K. H. Hoi, D. Mallik, M. Sayah, M. G. Organ, Angew.
Chem. Int. Ed. 2012, 51, 3314–3332; Angew. Chem. 2012, 124, 3370–3388;
b) D. Yuan, H. V. Huynh, Molecules 2012, 17, 2491–2517; for Rh, see: c)
M. Poyatos, G. G. Barrios, E. Peris, N-Heterocyclic Carbenes (Ed.: S. P. Nolan),
Wiley-VCH, Weinheim, Germany, 2014, p. 271–299; for Ru, see: d) L.
Schwartsbud, M. K. Whittlesey, N-Heterocyclic Carbenes (Ed.: S. P. Nolan),
Wiley-VCH, Weinheim, Germany, 2014, p. 341–365; some recent reviews
on 3d-transition-metal catalysts; for Fe, see: e) K. Riener, S. Haslinger, A.
Raba, M. P. Högerl, M. Cokoja, W. A. Herrmann, F. E. Kühn, Chem. Rev.
2014, 114, 5215–5272; for Ni, see: f) M. T. Haynes II, E. P. Jackson, J.
Montgomery, N-Heterocyclic Carbenes (Ed.: S. P. Nolan), Wiley-VCH, Wein-
heim, Germany, 2014, p. 371–394; for Cu, see: g) J. D. Egbert, C. S. J.
[14] a) D. Pugh, N. J. Wells, D. J. Evans, A. A. Danopoulos, Dalton Trans. 2009,
7189–7195; b) A. A. Danopoulos, D. Pugh, H. Smith, J. Saßmannshausen,
Chem. Eur. J. 2009, 15, 5491–5502.
[15] Y. Liu, K. S. Kjær, L. A. Fredin, P. Chábera, T. Harlang, S. E. Canton, S. Lidin,
J. Zhang, R. Lomoth, K. E. Bergquist, P. Persson, K. Wärnmark, V. Sund-
ström, Chem. Eur. J. 2015, 21, 3628–3639.
[16] Before anion exchange, crystals suitable for X-ray crystallography were
accidentally given. The anion was [FeCl3-O-FeCl3]2–, which suggested
that iron(II) chloride, [FeCl3(solv)]–, might be oxidized upon crystallization
in air.
Received: December 31, 2015
Published Online: March 2, 2016
Eur. J. Org. Chem. 2016, 1651–1654
1654
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim