ˆ
ˆ ˆ
ˆ ˆ
the 1D double chains of 4, the (3,6)-connected 2D nets of 1–3,
the (3,4,3)-connected 2D nets of 5, and the (4,4)-connected 3D
sra-type framework of 6. To some extent, this work will enrich the
field of coordination polymers. Further exploration of macrocyclic
oxamide and polycarboxylate-bridged heterometallic materials
combining multi-dimensional frameworks and interesting physical
properties is currently under way in our laboratory.
H = -2J(S1S2 + S2S3). So far as magnetic interactions between the
adjacent trinuclear NiII units are concerned, the molecular field
3
approximation was used cM = ctri/[1 - ctri(2zj¢/Ng2b )]. Where
2
J is the intramolecular exchange integral between nickel(II) ions,
and zj¢ stands for the intermolecular exchange integral of the NiII
3
units. The best-fit parameters obtained were J = 2.69 cm-1, gNi
=
2.12, zj¢ = -0.38 cm-1, and the agreement factor defined as R =
R(cM )Cal - (cM )obsd]2 / R[(cM )obsd]2 is 1.26 ¥ 10-2. The point below
6 K can not be fitted (Fig. S7†). With this hypothesis for fitting,
the zj¢ parameter is overestimated, because the logical D parameter
(zero-field splitting) was not considered.
Acknowledgements
This work was supported by the National Natural Science Foun-
dation of China (No. 20771083, No. 20901059, No. 21001081,
21043004, 90922032 and No. 20771081) and National Basic
Research Program of China, 978 Program, 2007CB815305.
Thus, a more realistic second approach for the magnetic
ˆ
analysis was carried out by using the spin Hamiltonian: H =
2
ˆ ˆ
ˆ ˆ
ˆ
-2J(S1S2 + S2S3) + D[SZ - S(S+1)/3]dS,S
= 3. So far as
magnetic interactions between the adjacent trinuclear NiII units
3
are concerned, the molecular field approximation was used:
cM = ctri/[1 - ctri(2zj¢/Ng2b )]. Where D is a zero-field splitting
2
Notes and references
parameter (assuming they are equal for each NiII ion). The least-
squares fit to the experimental data was found with J = 2.45 cm-1,
1 (a) R. Custelcean, J. Bosano, P. V. Bonnesen, V. Kertesz and B. P. Hay,
Angew. Chem., Int. Ed., 2009, 48, 4025; (b) X. J. Kong, Y. L. Wu, L. S.
Long, L. S. Zheng and Z. P. Zheng, J. Am. Chem. Soc., 2009, 131, 6918;
(c) Z. G. Guo, R. Cao, X. Wang, H. F. Li, W. B. Yuan, G. J. Wang, H. H.
Wu and J. Li, J. Am. Chem. Soc., 2009, 131, 6894; (d) M. Yoshizawa, M.
Tamura and M. Fujita, Science, 2006, 312, 251; (e) S. Sato, J. Lida, K.
Suzuki, M. Kawano, T. Ozeki and M. Fujita, Science, 2006, 313, 1273;
(f) S. L. James, Chem. Soc. Rev., 2003, 32, 276; (g) N. L. Rosi, J. Eckert,
M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe and O. M. Yaghi,
Science, 2003, 300, 1127; (h) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig,
H. K. Chae, M. Eddadoudi and J. Kim, Nature, 2003, 423, 705; (i) S.
K. Nune, P. K. Thallapally, A. Dohnalkova, C. Wang, J. Liu and G. J.
Exarhos, Chem. Commun., 2010, 46, 4878; (j) C. A. Fernandez, P. K.
Thallapally, R. K. Motkuri, S. K. Nune, J. C. Sumrak, J. Tian and J.
Liu, Cryst. Growth Des., 2010, 1, 1037; (k) P. K. Thallapally, J. Tian,
M. R. Kishan, C. A. Fernandez, S. J. Dalgarno, P. B. McGrail, J. E.
Warren and J. L. Atwood, J. Am. Chem. Soc., 2008, 130, 16842.
2 (a) M. Westerhausen, Dalton Trans., 2006, 4755; (b) B. Zhang, Z. H.
Ni, A. L. Cui and H. Z. Kou, New J. Chem., 2006, 30, 1327; (c) J. R.
Stork, V. S. Thoi and S. M. Cohen, Inorg. Chem., 2007, 46, 11213; (d) Y.
Zhang, B. Chen, F. R. Fronczek and A. W. Maverick, Inorg. Chem.,
2008, 47, 4433; (e) B. Chen, F. R. Fronczek and A. W. Maverick, Inorg.
Chem., 2004, 43, 8209; (f) B. Chen, F. R. Fronczek and A. W. Maverick,
Chem. Commun., 2003, 2166.
3 (a) Y. C. Liang, R. Cao, W. P. Su, M. C. Hong and W. J. Zhang, Angew.
Chem., Int. Ed., 2000, 39, 3304; (b) M. B. Zhang, J. Zhang, S. T. Zheng
and G. Y. Yang, Angew. Chem., Int. Ed., 2005, 44, 1385; (c) Q. Yue, J.
Yang, G. H. Li, G. D. Li, W. Xu, J. S. Chen and S. N. Wang, Inorg.
Chem., 2005, 44, 5241; (d) J. W. Cheng, S. T. Zheng and G. Y. Yang,
Inorg. Chem., 2007, 46, 10261; (e) T. K. Prasad and M. V. Rajasekharan,
Cryst. Growth Des., 2008, 8, 1346.
4 (a) X. J. Kong, Y. P. Ren, W. X. Chen, L. S. Long, Z. P. Zheng, R. B.
Huang and L. S. Zheng, Angew. Chem., Int. Ed., 2008, 47, 2398; (b) X.
J. Kong, Y. P. Ren, L. S. Long, Z. P. Zheng, R. B. Huang and L. S.
Zheng, J. Am. Chem. Soc., 2007, 129, 7016; (c) Q. D. Liu, S. Gao, J. R.
Li, Q. Z. Zhou, K. B. Yu, B. Q. Ma, S. W. Zhang, X. X. Zhang and T.
Z. Jin, Inorg. Chem., 2000, 39, 2488; (d) W. Shi, X. Y. Chen, Y. N. Zhao,
B. Zhao, P. Cheng, A. Yu, H. B. Song, H. G. Wang, D. Z. Liao, S. P.
Yan and Z. H. Jiang, Chem.–Eur. J., 2005, 11, 5031.
gNi = 2.12 (fixed), D = 2.33 cm-1, zj¢ = -0.038 cm-1 and the
2
agreement factor defined as R = R(cM )Cal - (cM )obsd]2 / R[(cM)obsd
]
is 2.65 ¥ 10-5. For complex 4, the second approach reproduces
more satisfactorily the magnetic data in the whole temperature
range (Fig. 6). However, this approach does not improve the fit
because the inter-trinuclear magnetic coupling and D are very
closely related and their independent contribution can not be
easily accounted for.21 Thus, the fitted results only indicate that,
besides the intra-trinuclear coupling, the zero-field splitting and
inter-trinuclear coupling are present.
The weak ferromagnetic coupling observed for complex 4 can
be rationalized by the geometry parameters considerations. The
interaction is predicted to be ferromagnetic for Ni–O–Ni angles
lower than 93.5◦, while the magnetic coupling is antiferromagnetic
for greater values.22 For complex 4, the bond angles of Ni–O–
Ni are 126.23◦ which usually give antiferromagnetic coupling.
However, according to R. Mukherjee et al., when the bridging
ligands are dissimilar, the ferromagnetic interaction between Ni(II)
ions would result from the counter-complementary effect of the
dissimilar bridges.23 Another possible reason for the ferromagnetic
interaction between the Ni(II) ions is the dihedral angles. For
4, the two dissimilar bridges (H2O, COO-) destroy the planar
structure of the two magnetic orbitals of the Ni(II) ions, and
this distortion reduced the overlap integral that exists between
the magnetic orbitals, resulting in a relatively small ferromagnetic
coupling constant.
Conclusions
5 (a) C. E. Plenik, S. M. Liu and S. G. Shore, Acc. Chem. Res., 2003,
36, 499; (b) H. Z. Kou, B. C. Zhou, S. Gao and R. Z. Wang, Angew.
Chem., Int. Ed., 2003, 42, 3288; (c) F. Prins, E. Pasca, L. J. D. Jongh,
H. Kooijman, A. L. Spek and S. Tanase, Angew. Chem., Int. Ed., 2007,
46, 6081; (d) A. Figuerola, C. Diaz, J. Ribas, V. Tangoulis, J. Granell, F.
Lloret, J. Mah´ıa and M. Maestro, Inorg. Chem., 2003, 42, 641; (e) M.
Estrader, J. Ribas, V. Tangoulis, X. Solans, M. Font-Bard´ıa, M. Maestro
and C. Diaz, Inorg. Chem., 2006, 45, 8239.
One homometallic and five heterometallic coordination poly-
mers were synthesized with macrocyclic oxamide and 1,3,5-
benzenetricarboxylate co-ligands under solvothermal reaction
conditions. This research reveals that (i) the coexistence of
macrocyclic oxamide and polycarboxylate bridged-ligands have
profound effects on the construction of coordination polymers
with different structures and properties; (ii) the coordination mode
of the polycarboxylate groups and the coordination geometry of
central metals play an important role in the structure construction.
Polymers 1–6 hold the 1D, 2D or 3D framework structure, viz.,
6 (a) B. Zhao, H. L. Gao, X. Y. Chen, P. Cheng, W. Shi, D. Z. Liao, S. P.
Yan and Z. H. Jiang, Chem.–Eur. J., 2006, 12, 149; (b) O. Margeat, P.
G. Lacroix, J. P. Costes, B. Donnadieu, C. Lepetit and K. N. Akatani,
Inorg. Chem., 2004, 43, 4743.
7 O. Kahn, Acc. Chem. Res., 2000, 33, 647.
5536 | Dalton Trans., 2011, 40, 5528–5537
This journal is
The Royal Society of Chemistry 2011
©