Mogha et al.
La2O3/Reduced Graphene Oxide Nanocomposite: A Highly Efficient, Reusable Heterogeneous Catalyst
119.67, 119.78, 121.49, 122.18, 123.67, 123.89, 124.14,
126.89, 129.18, 134.57, 136.78, 137.98, 146.79.
New Delhi, India for financial assistance. Authors are also
grateful to Head, Department of Chemistry, USIC, Uni-
versity of Delhi for providing instrumentation facilities
and Sophisticated Analytical Instrument Facility (SAIF)-
AIIMS, New Delhi, under the SAIF Program of DST for
providing TEM facility.
3,3ꢃ-Bis(indolyl)-3-nitrophenylmethane (9): IR (KBr,
cm−1): 3404, 3052, 1616, 1521, 1453, 1415, 1218, 1092,
1006, 741, 692. 1H NMR (CDCl3, 400 MHz) ꢂ: 5.93
(s, 1H), 6.61 (s, 2H), 7.05 (t, 2H, J = 8ꢅ05 Hz), 7.14
(t, 2H, J = 8ꢅ05 Hz), 7.31 (t, 4H, J = 8ꢅ05 Hz), 7.40
(t, 1H, J = 8ꢅ05 Hz), 7.60 (d, 1H, J = 7ꢅ32 Hz), 7.91 (br,
2H, NH), 8.04 (d, 1H, J = 7ꢅ32 Hz), 8.15 (s, 1H); 13C
NMR (CDCl3 100 MHz): 39.47, 111.11, 118.21, 119.56,
119.89, 121.22, 122.59, 123.60, 123.68, 124.71, 126.84,
129.34, 130.98, 134.93, 136.71, 146.33.
References and Notes
1. R. K. Upadhyay, N. Soin, and S. S. Roy, RSC Adv. 4, 3823
(2014).
2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
3. M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, and H. L. Poh,
TrAC, Trends Anal. Chem. 29, 954 (2010).
4. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, Electro-
analysis 22, 1027 (2010).
5. F. Xiao, J. Song, H. Gao, X. Zan, R. Xu, and H. Duan, ACS Nano
6, 100 (2012).
6. R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang, C. Wang, V. V.
Viswanathan, S. Park, I. A. Aksay, Y. Lin, Y. Wang, and J. Liu,
J. Am. Chem. Soc. 133, 2541 (2011).
7. S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo,
S. Mhaisalkar, J. Wei, and C. H. Sow, J. Am. Chem. Soc. 34, 4905
(2012).
8. G. Xiang, J. He, T. Li, J. Zhuang, and X. Wang, Nanoscale 3, 3737
(2011).
9. P. Matyba, H. Yamaguchi, M. Chhowalla, N. D. Robinson, and
L. Edman, ACS Nano 5, 574 (2011).
10. Q. Zhuo, Y. Ma, J. Gao, P. Zhang, Y. Xia, Y. Tian, X. Sun, J. Zhong,
and X. Sun, Inorg. Chem. 52, 314 (2013).
11. J. Huang, K. Fu, N. Yao, X. Deng, M. Ding, M. Shao, X. Xu, and
12. W. Su, W. Lu, S. Jia, J. Wang, H. Ma, and Y. Xing, Catal. Lett.
145, 1446 (2015).
13. Z. Hajjar, M. Kazemeini, A. Rashidi, and M. Bazmi, Catal. Lett.
145, 1660 (2015).
14. K. Szo˝ri, R. Puskás, G. Szo˝llo˝si, I. Bertóti, J. Szépvölgyi, and
M. Bartók, Catal. Lett. 143, 539 (2012).
15. S. Chen, J. W. Zhu, and X. Wang, J. Phys. Chem. C 114, 11829
(2010).
3,3ꢃ-Bis(indolyl)-4-nitrophenylmethane (10): IR (KBr,
cm−1): 3404, 3052, 1521, 1346, 1212, 1093, 742; 1H NMR
(CDCl3, 400 MHz) ꢂ: 5.97 (s, 1H), 6.66–6.68 (m, 2H),
6.98–7.02 (t, 2H, J = 8ꢅ05 Hz), 7.16–7.20 (m, 2H),
7.30–7.38 (m, 4H), 7.42–7.49 (m, 2H), 7.99 (br, 2H, NH),
8.10–8.13 (m, 2H); 13C NMR (CDCl3, 100 MHz): 39.88,
111.25, 117.44, 119.58, 119.68, 122.35, 123.64, 126.66,
129.57, 136.55, 146.44.
3,3ꢃ-Bis(indolyl)-4-methylphenylmethane (11): IR (KBr,
cm−1): 3413, 3044, 1457, 1339, 1213, 1092, 1008, 738;
1H NMR (CDCl3, 400 MHz) ꢂ: 2.32 (s, 3H), 5.84 (s, 1H),
6.62–6.63 (s, 2H), 6.98 (t, 2H, J = 8ꢅ05 Hz), 7.08 (d, 2H,
J = 7ꢅ32 Hz), 7.16 (t, 2H, J = 8ꢅ05 Hz), 7.22 (d, 2H,
J = 7ꢅ32 Hz), 7.33 (d, 2H, J = 7ꢅ32 Hz), 7.40 (d, 2H,
J = 7ꢅ32 Hz), 7.84 (br, 2H, NH); 13C NMR (CDCl3,
Delivered by Ingenta to: State University of New York at Binghamton
100 MHz): 21.05, 39.71, 110.98, 119.13, 119.81, 119.91,
IP: 185.13.32.70 On: Tue, 28 Feb 2017 20:06:05
121.82, 123.51, 127.04, 128.52, 128.87, 135.45, 136.61,
140.93.
Copyright: American Scientific Publishers
3,3ꢃ-Bis(indolyl)-4-ethylphenylmethane (12): IR (KBr,
cm−1): 3404, 3051, 1480, 1453, 1211, 1095, 1010, 740;
1H NMR (CDCl3, 400 MHz) ꢂ: 1.30 (t, 3H), 2.39 (q, 2H),
5.82 (s, 1H), 6.61 (s, 2H), 7.01 (t, 2H, J = 8ꢅ05 Hz),
7.09 (d, 2H, J = 7ꢅ32 Hz), 7.17 (t, 2H, J = 8ꢅ05 Hz),
7.24 (d, 2H, J = 7ꢅ32 Hz), 7.36 (d, 2H, J = 7ꢅ32 Hz),
7.40 (d, 2H, J = 7ꢅ32 Hz), 7.81 (br, 2H, NH); 13C NMR
(CDCl3, 100 MHz): 16.11, 26.05, 39.70, 110.92, 119.15,
119.84, 119.95, 121.86, 123.54, 127.08, 128.54, 128.88,
135.46, 136.66, 140.97.
16. C. Xu, X. Wang, and J. W. Zhu, J. Phys. Chem. C 112, 19841
(2008).
17. N. K. Mogha, V. Sahu, M. Sharma, R. K. Sharma, and D. T. Masram,
Appl. Biochem. Biotechnol. 174, 1010 (2014).
18. S. Valange, A. Beauchaud, J. Barrault, Z. Gabelica, and M. Daturi,
J. Catal. 251, 113 (2007).
19. L. G. Wang, Y. B. Ma, Y. Wang, S. M. Liu, and Y. Q. Deng, Catal.
Comm. 12, 1458 (2011).
20. R. J. Sundberg, The Chemistry of Indoles, Academic press,
New York (1996).
21. R. Bell, S. Carmeli, N. Sar, and A. Vibrindole, J. Nat. Prod. 57, 1587
(1994).
22. T. Fukuyama and X. Chen, J. Am. Chem. Soc. 116, 3125
(1994).
23. B. V. Gregorovich, K. Liang, M. Clugston, and S. Macdonald, Can.
25. J. S. Yadav, B. V. S. Reddy, and S. Sunitha, Adv. Synth. Catal.
345, 349 (2003).
26. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun,
A. Slesarev, B. L. Alemany, W. Lu, and J. M. Tour, ACS Nano
4, 4806 (2010).
4. CONCLUSION
A novel La2O3/RGO catalyst for the synthesis of
bis(indolyl)methanes under solvent free conditions at room
temperature has been reported. This procedure offerssev-
eral advantages such as easy catalyst separation from the
reaction medium, a simple workup procedure, catalyst
reusability, short reaction time, and good to excellent prod-
uct yields. In addition, the use of environmentally benign
catalysts and avoidance of hazardous organic solvents are
important features of this method.
Acknowledgments: The authors are grateful to Uni-
versity of Delhi for providing R&D Grant. Sugat Kirti
is Thankful to University Grants Commission (UGC),
J. Nanosci. Nanotechnol. 17, 2508–2514, 2017
2513