Table 1 Photovoltaic performances of the BHJ oligomer solar cells
composed of perylenes/C61-PCBM (1 : 2) blends
and the New & Renewable Energy of the Korea Institute of
Energy Technology Evaluation and Planning (KETEP) grant
funded by the Korea government Ministry of Knowledge
Economy (No. 2010T100100674).
Components
Jsc/mA cmÀ2
Voc/V
FF (%)
Z (%)
FPTTPA
FP3HTTPA
PTPA
5.94
2.53
0.83
0.776
0.960
0.575
30.80
33.31
27.24
1.42
0.81
0.13
Notes and references
1 (a) Y. Nagao and T. Misono, Dyes Pigm., 1984, 5, 171;
(b) H. Zollinger, Color Chemistry, VCH, Weinheim, 1987.
2 (a) B. A. Jones, M. K. Ahrens, M. Yoon, A. Facchetti, T. J. Marks
and M. R. Wasielewski, Angew. Chem., Int. Ed., 2004, 43, 6363;
(b) B. A. Jones, A. Facchetti, M. R. Wasielewski and T. J. Marks,
J. Am. Chem. Soc., 2007, 129, 15259.
3 (a) M. P. O’Neil, M. P. Niemczyk, W. A. Svec, D. Gosztda,
G. L. Gaines and M. R. Wasielewski, Science, 1992, 257, 63;
(b) M. J. Tauber, R. F. Kelley, J. M. Giaimo, R. Rybtchinski
and M. R. Wasielewski, J. Am. Chem. Soc., 2006, 128, 1782;
(c) M. Cotlet, T. Vosch, S. Habuchi, T. Weil, K. Mullen,
¨
J. Hofkens and F. De Schryver, J. Am. Chem. Soc., 2005,
127, 9760; (d) G. Schweitzer, R. Gronheid, S. Jordens, M. Lor,
G. De Belder, T. Weil, E. Reuther, K. Mullen and F. De Schryver,
¨
Fig. 3 AFM surface topography of the film cast from the (a)
FPTTPA : C61-PCBM composite and (b) PTPA : C61-PCBM
composite.
J. Phys. Chem. A, 2003, 107, 3199.
4 (a) L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons,
¨
¨
R. H. Friend and J. D. MacKenzie, Science, 2001, 293, 1119;
(b) E. E. Neuteboom, S. C. J. Meskers, P. A. van Hal, J. K. J. van
Duren, E. W. Meijer, R. A. J. Janssen, H. Dupin, G. Poutois,
the FPTPA : PCBM device led to the large enhancement in the
power conversion efficiency.
Fig. 2b shows the IPCE curves based on the three devices.
The shape of the curves is quite similar to the corresponding
absorption spectra of three blend films (see ESIw), which
indicates that the visible spectrum of the blend contributed
to the power conversion efficiency.
´
J. Cornil, R. Lazzaroni, J.-L. Bredas and D. Beljonne, J. Am.
Chem. Soc., 2003, 125, 8625.
5 R. Gvishi, R. Reisfeld and Z. Brushtein, Chem. Phys. Lett., 1993,
213, 338.
6 (a) X. Zhan, Z. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow,
Y. Li, D. Zhu, B. Kippelen and S. R. Marder, J. Am. Chem. Soc.,
2007, 129, 7246; (b) E. Zhou, K. Tajima, C. Yang and
K. Hashimoto, J. Mater. Chem., 2010, 20, 2362; (c) Y. Liu,
C. Yang, Y. Li, Y. Li, S. Wang, J. Zhuang, H. Liu, N. Wang,
X. He, Y. Li and D. Zhu, Macromolecules, 2005, 38, 716.
The maximum quantum efficiency of the device based on the
FPTTPA : PCBM blend reached 47% at 435 nm.
Fig. 3 shows AFM images of the blend films of FPTTPA
and PTPA with PCBM. In the image of FPTTPA : PCBM
blends, randomly distributed islands are connected to each
other and demonstrate interpenetrating networks. In contrast,
the PTPA : PCBM blend shows large segregation of each
phase. The good photovoltaic performance obtained with
FPTTPA as the donor should be ascribed to the synergistic
effects of its enhanced absorption and good quality uniform
film due to a planar configuration.
7 (a) C. Kohl, S. Becker and K. Mullen, Chem. Commun., 2002,
¨
¨
2778; (b) N. G. Pschirer, C. Kohl, F. Nolde, J. Qu and K. Mullen,
Angew. Chem., Int. Ed., 2006, 45, 1401.
8 (a) F. Holtrup, G. Muller, H. Quante, S. de Feyter, F. C.
¨
De Schryver and K. Mullen, Chem.–Eur. J., 1997, 3,
¨
219; (b) Y. Geerts, H. Quante, H. Platz, R. Mahrt,
M. Hopmeier, A. Bohm and K. Mullen, J. Mater. Chem., 1998,
¨
¨
8, 2357.
9 Z. Yuan and X. Qian, Chem. Commun., 2010, 46, 2772.
10 S. Muller and K. Muller, Chem. Commun., 2005, 4045.
¨
¨
11 W. Jiang, Y. Li, W. Yue, Y. Zhen, J. Qu and Z. Wang, Org. Lett.,
2010, 12, 228.
12 H. Langhals and S. Kirner, Eur. J. Org. Chem., 2000, 365.
13 Y. Li, Y. Li, J. Li, C. Li, X. Liu, M. Yuan, H. Liu and S. Wang,
Chem.–Eur. J., 2006, 12, 8378.
In summary, three types of novel perylene-based oligomers
were synthesized and used as the electron donors in bulk hetero-
junction (BHJ) organic solar cells. The overall power conversion
efficiency
of
the
ITO/PEDOT : PSS/FPTTPA :PCBM
14 (a) C.-H. Huang, N. D. McClenaghan, A. Kuhn, J. W. Hofstraat
and D. M. Bassan, Org. Lett., 2005, 7, 3409; (b) M. Turbiez,
P. Frere, M. Allain, C. Videlot, J. Ackermann and J. Roncali,
´
(1 : 2 wt% ratio)/Al device is 1.42%. The high efficiency of the
device is attributed to the improved light harvesting, balanced
charge transport, and good morphology. These results provide a
potential design strategy for developing novel electron donor
oligomers or polymers with high photovoltaic performance
through sophisticated structural modifications.
Chem.–Eur. J., 2005, 11, 3742.
15 (a) R. de Bettignies, Y. Nicolas, P. Blanchard, E. Levillain,
J.-M. Nunzi and J. Roncali, Adv. Mater., 2003, 15, 1939;
(b) G. Yu, J. Gao, J. C. Hunmelen, F. Wudl and A. J. Heeger,
Science, 1995, 270, 1789; (c) M. Granstron, K. Petritsh,
¨
This work was supported by the WCU (the Ministry of
Education and Science) program (No. R31-2008-000-10035-0)
A. C. Arias, A. Lux, M. R. Andersson and R. H. Friend, Nature,
1998, 395, 257.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 5509–5511 5511