ORGANIC
LETTERS
2012
Vol. 14, No. 2
472–475
Optimization of HNO Production from
N,O-bis-Acylated Hydroxylamine Derivatives
Art D. Sutton,† Morgan Williamson,‡ Hilary Weismiller,‡ and John P. Toscano*,†
Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218,
United States, and Department of Chemistry, Edinboro University, Edinboro,
Pennsylvania 16444, United States
Received November 8, 2011
ABSTRACT
A wide range of N,O-bis-acylated hydroxylamine derivatives with chloro or arenesulfonyl leaving groups, and a related set of N-hydroxy-N-
acylsulfonamides, have been synthesized and evaluated for nitroxyl (HNO) production. Mechanistic studies have revealed that the observed
aqueous chemistry is more complicated than originally anticipated, and have been used to develop a new series of efficient HNO precursors
(4uꢀ4x, 7cꢀ7d) with tunable half-lives.
Recent research has shown that nitroxyl (HNO), the
one-electron reduced and protonated relative of nitric
oxide (NO), has important and unique biological activity,
especially as a potential alternative tocurrent treatments of
cardiac failure.1ꢀ4 HNO is a reactive molecule (especially
withthiols) thatspontaneously dimerizesand subsequently
dehydrates to form nitrous oxide (N2O). Thus, in order to
study HNO chemistry or biology, donor molecules for the
generation of HNO in situ are required; however, the range
of HNO donor molecules suitable for use under physiolo-
gically relevant conditions is currently quite limited.5,6 These
include Angeli’s salt (Na2N2O3),7ꢀ9 Piloty’s acid derivatives
(ArSO2NHOH),10,11 primary amine-based diazenium-
diolates,12 acyloxy nitroso compounds,13 and precursors
to acyl nitroso compounds.14ꢀ16
Acyl nitroso (AN) compounds are transient electro-
philes that react with nucleophiles, including water, to
produce HNO. Notable among the strategies that have
been employed to generate acyl nitroso compounds is the
work of Nagasawa and co-workers, who examined a series
(9) Miranda, K. M.; Dutton, A. S.; Ridnour, L. A.; Foreman, C. A.;
Ford, E.; Paolocci, N.; Katori, T.; Tocchetti, C. G.; Mancardi, D.;
Thomas, D. D.; Espey, M. G.; Houk, K. N.; Fukuto, J. M.; Wink, D. A.
J. Am. Chem. Soc. 2005, 127, 722–731.
† Johns Hopkins University.
‡ Edinboro University.
(10) Bonner, F. T.; Ko, Y. Inorg. Chem. 1992, 31, 2514–2519.
(11) Toscano, J. P.; Brookfield, F. A.; Cohen, A. D.; Courtney, S. M.;
Frost, L. M.; Kalish, V. J. U.S. Patent 8,030,356, 2011.
(12) Salmon, D. J.; Torres de Holding, C. L.; Thomas, L.; Peterson,
K. V.; Goodman, G. P.; Saavedra, J. E.; Srinivasan, A.; Davies, K. M.;
Keefer, L. K.; Miranda, K. M. Inorg. Chem. 2011, 50, 3262–3270.
(13) Sha, X.; Isbell, T. S.; Patel, R. P.; Day, C. S.; King, S. B. J. Am.
Chem. Soc. 2006, 128, 9687–9692.
(14) Corrie, J. E. T.; Kirby, G. W.; Mackinnon, J. W. M. J. Chem.
Soc., Perkin Trans. 1 1985, 883–886.
(15) Cohen, A. D.; Zeng, B.-B.; King, S. B.; Toscano, J. P. J. Am.
Chem. Soc. 2003, 125, 1444–1445.
(1) Paolocci, N.; Saavedra, W. F.; Miranda, K. M.; Martignani, C.;
Isoda, T.; Hare, J. M.; Espey, M. G.; Fukuto, J. M.; Feelisch, M.; Wink,
D. A.; Kass, D. A. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 10463–10468.
(2) Paolocci, N.; Katori, T.; Champion, H. C.; St. John, M. E.;
Miranda, K. M.; Fukuto, J. M.; Wink, D. A.; Kass, D. A. Proc. Natl.
Acad. Sci. U.S.A. 2003, 100, 5537–5542.
(3) Tocchetti, C. G.; Wang, W.; Froehlich, J. P.; Huke, S.; Aon,
M. A.; Wilson, G. M.; Di Benedetto, G.; O’Rourke, B.; Gao, W. D.;
Wink, D. A.; Toscano, J. P.; Zaccolo, M.; Bers, D. M.; Valdivia, H. H.;
Cheng, H.; Kass, D. A.; Paolocci, N. Circ. Res. 2007, 100, 96–104.
(4) Kemp-Harper, B. K. Antioxid. Redox Signaling 2011, 14, 1609–
1613.
(5) Miranda, K. M.; Nagasawa, H. T.; Toscano, J. P. Curr. Top. Med.
Chem. 2005, 5, 649–664.
(6) DuMond, J. F.; King, S. B. Antioxid. Redox Signaling 2011, 14,
1637–1648.
(7) Bonner, F. T.; Ravid, B. Inorg. Chem. 1975, 14, 558–563.
(8) Hughes, M. N.; Wimbledon, P. E. J. Chem. Soc., Dalton Trans.
1976, 703–707.
(16) Evans, A. S.; Cohen, A. D.; Gurard-Levin, Z. A.; Kebede, N.;
Celius, T. C.; Miceli, A. P.; Toscano, J. P. Can. J. Chem. 2011, 89, 130–
138.
(17) Nagasawa, H. T.; Lee, M. J. C.; Kwon, C. H.; Shirota, F. N.;
DeMaster, E. G. Alcohol 1992, 9, 349–353.
(18) Lee, M. J. C.; Elberling, J. A.; Nagasawa, H. T. J. Med. Chem.
1992, 35, 3641–3647.
r
10.1021/ol203016c
Published on Web 12/23/2011
2011 American Chemical Society