2888
S. Kamijo et al. / Tetrahedron Letters 52 (2011) 2885–2888
M.; Orlinkov, A. V.; Afanas’eva, L. V.; Vitt, S. V.; Petrovskii, P. V. Russ. Chem. Bull.
1998, 47, 918; (d) Kishi, A.; Kato, S.; Sakaguchi, S.; Ishii, Y. Chem. Commun. 1999,
1421; (e) Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.; Murai, S.
J. Am. Chem. Soc. 2001, 123, 10935; (f) Uenoyama, Y.; Fukuyama, T.; Morimoto,
K.; Nobuta, O.; Nagai, H.; Ryu, I. Helv. Chim. Acta 2006, 89, 2483; (g) Ryu, I.; Tani,
A.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Albini, A. Angew. Chem., Int. Ed. 2011,
50, 1869.
2-methyltetrahydrofuran 8d, the carbamoylation took place at
both ethereal methine and methylene C–H bonds to furnish amides
9d and 9d0 (entry 4). Favorable formation of the tetrasubstituted
9d reflects the superior intrinsic reactivity of the tertiary C–H over
the secondary C–H. Carbamoylation of acyclic ether 8e was less
efficient than that of the cyclic ones, and amide 9e was obtained
in modest yield (entry 5).
In conclusion, we have developed a new method for the direct
carbamoylation of ethers at ambient temperature. The reaction
proceeds through the photoinduced intermolecular functionaliza-
tion of the ethereal C–H bond by the action of benzophenone
and pentafluorophenyl isocyanate. The high chemoselectivity to-
ward the ethereal position and the effective functionalization of
sterically hindered tertiary C–H bonds are particularly noteworthy.
The present transformation should serve as an expedited strategy
for quick access to structurally complex organic molecules since
the carbamoyl group, a one-carbon unit with a high oxidation
state, can act as a handle for further synthetic elaborations.
5. Dissociation energies of CH3CH2OCH2CH3 is 389.1 kJ/mol and that of
CH3CH2CH3 is 410.5 2.9 kJ/mol. See: Molecular Structure and Spectroscopy.
Handbook of Chemistry and Physics; Lide, D. R., Ed.; CRC Press: Boca Raton, FL,
2006; pp 60–61.
6. Examples on photoinduced reaction of acetals, see: (a) Fraser-Reid, B.; Hicks, D.
R.; Walker, D. L.; Iley, D. E.; Yunker, M. B.; Tam, S. Y.-K.; Anderson, R. C.
Tetrahedron Lett. 1975, 16, 297; (b) Mosca, R.; Fagnoni, M.; Mella, M.; Albini, A.
Tetrahedron 2001, 57, 10319; (c) Fernández, M.; Alonso, R. Org. Lett. 2003, 5,
2461; (d) Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107,
2725; (e) Hoffmann, N. Chem. Rev. 2008, 108, 1052.
7. Recent reactions involving ethereal C–H activation for formation of C–C bonds,
see: (a) Yoshimitsu, T.; Arano, Y.; Nagaoka, H. J. Org. Chem. 2005, 70, 2342; (b)
Pastine, S. J.; Sames, D. Org, Lett. 2005, 7, 5429; (c) Tu, W.; Liu, L.; Floreancig, P.
E. Angew. Chem., Int. Ed. 2008, 47, 4184; (d) Li, Z.; Yu, R.; Li, H. Angew. Chem., Int.
Ed. 2008, 47, 7497; (e) Shikanai, D.; Murase, H.; Hata, T.; Urabe, H. J. Am. Chem.
Soc. 2009, 131, 3166; (f) Akindele, T.; Yamada, K.; Tomioka, K. Acc. Chem. Res.
2009, 42, 345; (g) Jurberg, I. D.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc.
2010, 132, 3543; (h) Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org. Lett.
2010, 12, 1732.
Acknowledgments
8. Photoinduced carbamoylation of sp3 C-H bonds adjacent to nitrogen atom has
been presented, see: Yoshimitsu, T.; Atsumi, C.; Matsuda, K.; Iimori, E.;
Nagaoka, H.; Tanaka, T. Proceedings of the 34th Symposium on Progress in Organic
Reactions and Synthesis, 1O-3, Kyoto, Nov. 4-5, 2008.
This research was financially supported by a Grant-in-Aid for
Young Scientists (S) to MI.
9. (a) Jenkins, I. D. J. Chem. Soc., Chem. Commun. 1994, 1227; (b) Malatesta, V.;
Ingold, K. U. J. Am. Chem. Soc. 1981, 103, 609.
Supplementary data
10. Examples of the reaction between a carbon radical and isocyanate, see: (a)
Minin, P. L.; Walton, J. C. J. Org. Chem. 2003, 68, 2960; (b) Heinrich, M. R.; Pérez-
Martin, I.; Zard, S. Z. Chem. Commun. 2005, 5928; (c) Yoshimitsu, T.; Matsuda,
K.; Nagaoka, H.; Tsukamoto, K.; Tanaka, T. Org. Lett. 2007, 9, 5115.
11. Some of the aryl isocyanates could inhibit the photo-excitation of
benzophenone.
Supplementary data associated with this article can be found, in
References and notes
12. Utilization of 4,40-dimethoxybenzophenone instead of benzophenone afforded
only a trace amount of the product 5e (<4%) and a significant amount of the
starting material 4a was recovered (84%).
13. It is worthy to point out that, from the synthetic point of view, the employment
of the ether as a limiting agent is one of the advantages of the present
procedure.
14. The product yield was decreased when the reaction was carried out without
careful removal of oxygen.
15. Procedure for photoinduced carbamoylation of ethereal C–H bonds: To a C6D6
1. (a) Recent reviews on direct C-H transformations, see: Handbook of C-H
Transformations; Dyker, G., Ed.; Wiley-VCH: Weinheim, 2005; Vols. 1 and 2, (b)
Handbook of Reagents for Organic Synthesis: Reagents for Direct Functionalization
of C-H Bonds; Paquette, L. A., Fuchs, P. L., Eds.; Wiley: Chichester, 2007.
2. Recent reviews on direct C–C bond formation from sp3 C–H bonds, see: (a) Ishii,
Y.; Sakaguchi, S.; Iwahama, T. Adv. Synth. Catal. 2001, 343, 393; (b) Fokin, A. A.;
Schreiner, P. R. Adv. Synth. Catal. 2003, 345, 1035; (c) Knorr, R. Chem. Rev. 2004,
104, 3795; (d) Davies, H. M.; Manning, J. R. Nature 2008, 451, 417; (e) Chen, X.;
Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094; (f) Li,
C.-J. Acc. Chem. Res. 2009, 42, 335; (g) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc.
Chem. Res. 2009, 42, 1074.
3. Kamijo, S.; Hoshikawa, T.; Inoue, M. Tetrahedron Lett. 2010, 51, 872.
4. In comparison to sp3 C–H arylation, alkenylation, and alkylation, sp3 C–H
acylation was relatively unexplored. For representative examples, see: (a)
Tabushi, I.; Kojo, S.; Fukunishi, K. J. Org. Chem. 1978, 43, 2370; (b) Fukunishi, K.;
Kohno, A.; Kojo, S. J. Org. Chem. 1988, 53, 4369; (c) Akhrem, I. S.; Churilova, I.
(660
l
L) solution of cis-1,2-cyclohexanediol isopropylidene ketal 4a (20.6 mg,
mol) in 5-mm NMR tube were added benzophenone (24.1 mg,
mol) and pentafluorophenyl isocyanate (140 L, 1.07 mmol) at rt. The
132
132
l
l
a
l
mixture was degassed by freeze-thaw for 3 times. The NMR tube was placed at
5 cm distance from a UV-lamp and irradiated with a Riko 100 W medium-
pressure mercury lamp at rt for 9 h. The reaction was quenched with n-
butylamine (100 lL). Volatile materials were removed by evaporation and the
residue was purified with flash column chromatography (hexane/AcOEt 30:1)
to give N-(perfluorophenyl)amide 5e in 48% yield (23.1 mg).