Enantioselective Synthesis of Deoxymannojirimycin
136.0 (Cq), 143.6 (Cq), 168.9 (Cq) ppm. HRMS: calcd. for
C22H29NO6SSiNa 486.1383; found 486.1373.
conversion and the starting material was recovered in 50%
yield after 15 h.
After selective removal of the TBS protecting group of
14, the intermediate diol was acetylated to isolate penta-
acetylated (–)-DMJ 15. Finally, total deprotection with a
6 n HCl gave expected d-DMJ salt 1·HCl after simple evap-
oration of the volatiles. The spectral data of this compound
are in total accord with the literature data.[20] This validates
our enantioselective approach for the synthesis of both
enantiomers of DMJ (1).
Supporting Information (see footnote on the first page of this arti-
cle): HPLC data and/or optical rotation for compounds 4, 5, 9, 12,
and 1.
Acknowledgments
We gratefully acknowledge financial support from the University
Pierre et Marie Curie (UPMC), Centre National de la Recherche
Scientifique (CNRS), and Institut Universitaire de France (IUF).
We thank A. Dos Santos, H. Said Hamed, and R. Ngo for initial
technical assistance.
Conclusions
In conclusion, we reported an alternative enantioselective
synthesis of deoxymannojirimycin that rivals previously
published preparations. (–)-Deoxymannojirimycin was ob-
tained in seven steps from acyclic precursor 6 (34% yield,
Ͼ96%ee). This approach allows differentiation of all the
hydroxy groups, which we believe offers great potential for
the elaboration of more complex molecules. This work illus-
trates that a strategy based on the Sharpless epoxidation of
functionalized trisubstituted alkenes is a viable and useful
synthetic approach for the enantioselective construction of
polyhydroxylated heterocycles.
[1] A. E. Stütz (Ed.), Iminosugars as Glycosidase Inhibitors: Nojiri-
mycin and Beyond, Wiley-VCH, Weinheim, 1999; P. Compain,
O. R. Martin (Eds.), Iminosugars: From Synthesis to Thera-
peutic Applications, John Wiley & Sons, Chichester, 2007
[2] a) M. S. M. Pearson, M. Mathé-Allainmat, V. Fargeas, J. Leb-
reton, Eur. J. Org. Chem. 2005, 2159–2191; b) K. Afarinkia, A.
Bahar, Tetrahedron: Asymmetry 2005, 16, 1239–1287; c) V. H.
Lillelund, H. H. Jensen, X. Liang, M. Bols, Chem. Rev. 2002,
102, 515–554; d) H. H. Jensen, M. Bols, Acc. Chem. Res. 2005,
38, 259–265.
[3] a) N. Asano, R. J. Nash, R. J. Molyneux, G. W. J. Fleet, Tetra-
hedron: Asymmetry 2000, 11, 1645–1680; b) A. Kato, N. Kato,
E. Kano, I. Adachi, K. Ikeda, L. Yu, T. Okamoto, Y. Banba,
H. Ouchi, H. Takahata, N. Asano, J. Med. Chem. 2005, 28,
2036–2044.
[4] a) A. Lammerts van Bueren, A. Ardvol, J. Fayers-Kerr, B. Luo,
Y. Zhang, M. Sollogoub, Y. Blériot, C. Rivora, G. D. Davies,
J. Am. Chem. Soc. 2010, 132, 1804–1806; b) F. Marcelo, Y. He,
S. A. Yuzwa, L. Nieto, J. Jiménez-Barbero, M. Sollogoub, D. J.
Vocadlo, G. D. Davies, Y. Blériot, J. Am. Chem. Soc. 2009, 131,
5390–5392; c) L. E. Tailford, W. A. Offen, N. L. Smith, C. Du-
mon, C. Morland, J. Gratien, M.-P. Heck, R. V. Stick, Y.
Bleriot, A. Vasella, H. J. Gilbert, G. J. Davies, Nat. Chem. Biol.
2008, 4, 306–312; d) H. Li, C. Schütz, S. Favre, Y. Zhang, P.
Vogel, P. Sinaÿ, Y. Blériot, Org. Biomol. Chem. 2006, 4, 1653–
1662.
[5] For selected reports, see: a) H. Kajirura, H. Koiwa, Y. Nakaz-
awa, A. Okazawa, A. Kobayashi, T. Seki, K. Fujiyama, Glyco-
biology 2010, 20, 235–247; b) Y. Zhao, Y. Zhou, K. M. O’Boyle,
P. V. Murphi, Chem. Biol. Drug Des. 2010, 75, 570–577; c) T.
Wennekes, A. J. Meijert, A. K. Groen, R. G. Boot, J. E. Gro-
ener, M. van Eijk, R. Ottenhoff, N. Bijl, K. Ghauharali, H.
Song, T. J. O’Shea, H. Liu, N. Yew, D. Copeland, R. J.
van den Berg, G. A. van der Marel, H. S. Overkleeft, J. M.
Aerts, J. Med. Chem. 2010, 53, 689–698; d) K. Miyake, K. Na-
gai, Neurotoxicol. Teratol. 2009, 30, 144–150; e) J. Balzarini,
FEBS Lett. 2007, 581, 2060–2064; f) Y. Lu, Y.-Y. Xu, K.-Y.
Fan, Z.-H. Shen, Biochem. Biophys. Res. Commun. 2006, 344,
221–225; g) G. Cai, P. S. Salonikidis, J. Fei, W. Schwarz, R.
Schülein, W. Reutter, H. Fan, FEBS J. 2005, 272, 1625–1638.
[6] a) P. D. Bailey, P. A. Millwood, P. D. Smith, Chem. Commun.
1998, 633–640; b) S. Laschat, T. Dicker, Synthesis 2000, 1781–
1813; c) P. M. Weintraub, J. S. Sabol, J. M. Kane, D. R. Borch-
erding, Tetrahedron 2003, 59, 2953–2989; d) F.-X. Felpin, J. Le-
breton, Eur. J. Org. Chem. 2003, 3693–3712; e) M. G. P. Buffat,
Tetrahedron 2004, 60, 1701–1729; f) J. P. A. Harrity, O. Pro-
voost, Org. Biomol. Chem. 2005, 3, 1349–1358; g) P.-Q. Huang,
Synlett 2006, 8, 1133–1149.
Experimental Section
Molecular sieves (4 Å, 5.7 g) were heated at 250 °C and dried in
vacuo overnight before use. Under an atmosphere of argon, a solu-
tion of Ti(OiPr)4 (4.4 mL, 15 mmol, 1.2 equiv.) in CH2Cl2 (93 mL)
was added to the molecular sieves. The heterogeneous solution was
stirred at –23 °C for 15 min. A solution of (+)-DIPT (4.32 g,
14.8 mmol, 1.2 equiv.) in CH2Cl2 (93 mL) was added by cannula to
the cold mixture under an atmosphere of argon, and the flask was
washed with CH2Cl2 (27 mL) The resulting mixture was stirred at
–23 °C for 25 min. A solution of allylic alcohol 6 (5.5 g, 12 mmol,
1 equiv.) in CH2Cl2 (93 mL + 27 mL to rinse) was then added by
cannula to the precedent cold mixture, followed by a solution of
TBHP (6 m in octane, 6.2 mL, 37 mmol, 3 equiv.). After stirring at
–23 °C for 7 d, the mixture was hydrolyzed with a saturated solu-
tion of Na2SO4 (30 mL) and stirred for 30 min to warm to room
temperature. The thick solution was filtered through Celite. The
filtrate was dried with MgSO4, filtered, and concentrated in vacuo.
After purification by flash chromatography (cyclohexane/EtOAc,
7:3 to 5:5), epoxy alcohol 9 (4.1 g, 8.8 mmol, 75%) was obtained
as a colorless oil. [α]2D0 = +15.9 (c = 0.9, CHCl3). HPLC (Chiracel
column OD-H, hexane/iPrOH = 0.45:0.05, flow rate = 0.5 mL/min,
r.t.): tR = 36.3 min, 96%ee. Rf = 0.25 (petroleum ether/EtOAc =
7:3). IR: ν = 3538, 2953, 1746, 1598, 1428, 1338, 1250, 1213, 1156,
˜
1097, 837, 735, 701 cm–1. 1H NMR (400 MHz, CDCl3): δ = 0.48
(s, 3 H SiMe3), 0.54 (s, 3 H, SiMe3), 2.42 (s, 3 H, TsMe), 2.97 (t, J
= 5.5 Hz, 1 H, 3-H), 3.38 (s, 3 H, CO2Me), 3.41 (d, J = 14 Hz, 1
H, 1-H), 3.66 (d, J = 18.5 Hz, 1 H, CO2Me), 3.71 (d, J = 5.5 Hz,
2 H, CH2OH), 3.92 (d, J = 18.5 Hz, 1 H, CH2CO2Me), 3.93 (d, J
= 15 Hz, 1 H, 1-H), 7.26 (d, J = 8 Hz, 2 H, Har), 7.34 to 7.41 (m,
3 H, Har), 7.54 to 7.62 (m, 4 H, Har) ppm. 13C NMR (100 MHz,
CDCl3): δ = –5.0 (CH3), –4.9 (CH3), 21.5 (CH3), 47.2 (CH2), 47.6
(CH2), 51.7 (CH3), 55.8 (Cq), 58.9 (CH), 60.2 (CH2), 127.4 (2 CH),
127.9 (2 CH), 129.5 (2 CH), 129.7 (CH), 134.4 (2 CH), 135.1 (Cq),
[7] For selected approaches toward piperidines, see: a) Y. Kishi, S.
Inagi, F. Fuchigami, Eur. J. Org. Chem. 2009, 103–109; b) N.
Palyam, M. Majewski, J. Org. Chem. 2009, 74, 4390–4392; c)
N. Moriyama, Y. Matsumura, M. Kuriyama, O. Onomura, Tet-
rahedron: Asymmetry 2009, 20, 2677–2687; d) E. Racine, C.
Eur. J. Org. Chem. 2011, 2777–2780
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2779