W. Leitner, G. Franciꢀ et al.
1999, pp. 199–246; c) T. Ohkuma, R. Noyori, in Handbook of Ho-
mogeneous Hydrogenation, Vol. 3, (Eds.: J. G. de Vries, C. J. Elsevi-
er), Wiley-VCH, Weinheim, 2007, pp. 1105–1116.
to chiral secondary alkan-2-ols with excellent enantioselec-
tivities. Using the Rh/(Sa,Sc)-(MatPhos) (L2) system, linear
AHCTUNGTRENNUNG
unfunctionalised alk-1-en-2-ol esters even with short chain
lengths could be hydrogenated for the first time with enan-
tioselectivities of 99% ee. Variation of the ester group or
substitution at the 1-position of the enol ester is tolerated
widely, allowing a remarkable broad range of structural di-
versity in the substrates. This provides a large degree of flex-
ibility to choose the most favourable synthetic pathway con-
sidering the generation of the vinyl esters as well as the iso-
lation procedures. In favourable cases, the reaction can be
carried out in “green” solvents and at low hydrogen pres-
sures, allowing even the use of standard glass equipment.
Thus, the procedure appears very attractive as a practical
chemo-catalytic alternative to enzymatic methods for the
synthesis of highly enantiomerically enriched alkan-2-ols.
[4] For selected examples see: a) T. Okhuma, M. Koizumi, H. Doucet,
T. Pham, M. Kozawa, K. Murata, E. Katayama, T. Yokozawa, T.
Ikariya, R. Noyori, J. Am. Chem. Soc. 1998, 120, 13529; b) T.
Ohkuma, M. Koizumi, K. MuÇiz, G. Hilt, C. Kabuto, R. Noyori, J.
[5] For selected examples see: a) Q. Jiang, Y. Jiang, D. Xiao, P. Cao, X.
[6] a) S. De Wildeman, N. Sereinig, in Science of Synthesis Stereoselec-
tive Synthesis, Vol. 2 (Eds.: J. G. de Vries, G. A. Molander, P. A.
Evans), Thieme, Stuttgart, 2011, pp. 133–208; for recent examples
167–176; c) S. Leuchs, T. Nonnen, D. Dechambre, S. Na’amnieh, L.
[7] A. Berkessel, M. L. Sebastian-Ibarz, T. N. Mꢁller, Angew. Chem.
[8] For hydrogenation of substituted enol carbamates see: L. Panella,
Experimental Section
Typical hydrogenation procedure: A high-pressure autoclave (10 mL)
equipped with a glass inlet and stirring bar was charged under an argon
atmosphere with the desired substrate (0.78 mmol) and a stock solution
of the catalyst (1 mL, 3.9 mm) in the desired solvent. The autoclave was
then pressurised with H2 (20 bar) and stirred at 1000 rpm for 1 h, unless
otherwise stated. After releasing the pressure, a small sample of the mix-
ture was immediately analysed by 1H NMR spectroscopy to determine
the conversion. The rest of the sample was filtered over a short pad of
silica SiO2 to remove the catalyst, and the enantiomeric excess was then
determined by chiral GC. Detailed procedures for the individual sub-
strates are provided in the Supporting Information.
[10] L. J. Gooßen, J. Paetzold, D. Koley, Chem. Commun. 2003, 706–707.
7581–7585; c) J. L. Nunez-Rico, P. Etayo, H. Fernandez-Perez, A.
Vidal-Ferran, Adv. Synth. Catal. 2012, 354, 3025–3035.
[13] a) U. Schmidt, J. Langner, B. Kirschbaum, C. Braun, Synthesis 1994,
1138–1140; b) G. Arena, G. Barreca, L. Carcone, E. Cini, G.
Marras, H. G. Nedden, M. Rasparini, S. Roseblade, A. Russo, M.
Taddei, A. Zanotti-Gerosa, Adv. Synth. Catal. 2003, 345, 1449–1454.
[16] M. T. Reetz, L. J. Gooßen, A. Meiswinkel, J. Paetzold, J. J. Feldthu-
[17] Enantioselectivities in the same range 87%–90% ees could be ob-
tained also with Rh monophosphoramidite catalysts. See ref. [12b].
[18] P. Mamone, M. F. Grꢁnberg, A. Fromm, B. A. Khan, L. J. Gooßen,
Acknowledgements
We thank H. Eschmann and J. Wurlitzer for GC and HPLC measure-
ments, K. Thenert and J. Nießen for valuable experimental assistance,
and Johnson Matthey and Heraeus for the donation of metal precursors.
The research leading to these results has received funding from the Euro-
pean Community (FP-7 integrated project SYNFLOW, grant agreement
no. 246461).
[19] a) F. Boeda, T. Beneyton, C. Crevisy, Mini-Rev. Org. Chem. 2008, 5,
96–127; b) N. W. Boaz, J. A. Ponasik in Phosphorus Ligands in
Asymmetric Catalysis (Ed.: A. Bçrner), Wiley-VCH, Weinheim,
2008, pp. 453–476; c) J. Wassenaar, J. N. H. Reek, Org. Biomol.
Keywords: asymmetric hydrogenation · chiral alcohols ·
enol esters · phosphine–phosphoramidite ligands · rhodium
[21] M. Eggenstein, A. Thomas, J. Theuerkauf, G. Franciꢀ, W. Leitner,
[1] a) Handbook of Homogeneous Hydrogenation, (Eds.: J. G. de Vries,
C. J. Elsevier), Wiley-VCH, Weinheim, 2007; b) P. Etayo, A. Vidal-
issue on hydrogenation: d) Acc. Chem. Res. 2008, 40, 1237–1419;
[2] a) J. Li, Y. Tang, Q. Wang, X. Li, L. Cun, X. Zhang, J. Zhu, L. Li, J.
bia, S. Zeror, J. Collin, J.-C. Fiaud, L. A. Zouioueche, Tetrahedron
[22] a) G. Franciꢀ, F. Faraone, W. Leitner in Asymmetric Synthesis with
Chemical and Biological Methods (Eds.: D. Enders, K.-E. Jaeger),
Wiley-VCH, Weinheim, 2007, pp. 250–277; b) T. Pullmann, B. En-
gendahl, Z. Zhang, M. Hçlscher, A. Zanotti-Gerosa, A. Dyke, G.
ous flow asymmetric hydrogenation with QuinaPhos see: c) U. Hin-
termair, T. Hoefener, T. Pullmann, G. Franciꢀ, W. Leitner, Chem-
[24] For alternative synthetic methods leading selectively to 1-alkyl vinyl
[3] a) N. Arai, T. Ohkuma in Science of Synthesis Stereoselective Synthe-
sis, Vol. 2 (Eds.: J. G. De Vries, G. A. Molander, P. A. Evans),
Thieme, Stuttgart, 2011, pp. 9–57; b) T. Ohkuma, R. Noyori, Com-
prehensive Asymmetric Catalysis I–III, Vol. 1, Springer, Heidelberg,
13302
ꢂ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2013, 19, 13299 – 13303