_
I. Deg˘irmenciog˘lu et al. / Polyhedron 30 (2011) 1628–1636
1635
[4] D.M.P. Mingos, J. Jiang (Eds.), Functional Phthalocyanine Molecular Materials,
vol. 135, Springer, 2010.
[5] C.C. Leznoff, A.B.P. Lever (Eds.), Phthalocyanines: Properties and Applications,
vol. 1–4, VCH, Weinheim, 1996.
[6] J. Zhang, Y.H. Tse, W.J. Pietro, A.B.P. Lever, J. Electroanal. Chem. 406 (1996) 203.
[7] S. Merey, Ö. Bekaroglu, J. Chem. Soc., Dalton Trans. (1999) 4503.
[8] K.M. Kadish, T. Nakanishi, A. Gürek, V. Ahsen, I. Yılmaz, J. Phys. Chem. – US 105
(2001) 9817.
[9] N. Koike, H. Uekusa, Y. Ohashi, C. Harnoode, F. Kitamura, T. Ohsaka, K. Tokuda,
Inorg. Chem. 355 (1996) 5798.
[10] J. Jiang, D.P. Arnold, H. Yu, Polyhedron 18 (1999) 2129.
[11] E.S. Dodsworth, A.B.P. Lever, P. Seymour, C.C. Leznoff, J. Phys. Chem. – US 895
(1985) 5698.
[12] T. Ceyhan, A. Altındal, A.R. Özkaya, Ö. Çelikbıçak, B. Salih, M.K. Erbil, Ö.
Bekarog˘lu, Polyhedron 264 (2007) 4239.
[13] N. Kobayashi, H. Miwa, V.N. Nemykin, J. Am. Chem. Soc. 124 (2002) 8007.
[14] A.Y. Tolbin, V.E. Pushkarev, L.G. Tomilova, N.S. Zefirov, Mendeleev Commun. 19
(2009) 78.
calculations, the highest occupied molecular orbitals (HOMOs) are
mainly localised on the related oxygen atoms, benzene carbons
(including A, B and C), C„N and CH@N groups. Similarly, the low-
est unoccupied molecular orbitals (LUMOs) are also centred on the
related oxygen atoms, benzene carbons (including A, B and C),
CH@N, C„N, ACH3 and olefinic carbons with their different
contributions.
TD-DFT studies have been very useful in order to assign the
electronic absorption transitions of the compounds. The low-en-
ergy excitations obtained by this method are in good agreement
with the experimental results. According these calculations, the
HOMO is composed of the
p-bonding –2py + pz/2px + py orbital
teams of the benzene rings– A, B and C, nppz and rpx orbitals of
the oxygen atoms O1, O2 and O3, the ppz orbitals of the CH@N
and C„N groups, and px orbitals with non-bonding interactions
of ACH3 and ACH2 groups with small contributions. The HOMOꢀ1
is centred on the same orbital teams with their different density.
The HOMOꢀ2 and HOMOꢀ3 are also fragments based on the same
orbital teams with their different density. The HOMOꢀ4 and
[15] Z. Odabasß, A. Altındal, A.R. Özkaya, M. Bulut, B. Salih, Ö. Bekarog˘lu, Polyhedron
26 (2007) 695.
[16] M.S. Rodriguez-Morgade, G. de la Torre, T. Torres, in: K.M. Kadish, K.M. Smith,
R. Guilard (Eds.), The Porphyrin Handbook, vol. 15, Academic Press, San Diego,
2003, p. 125.
[17] M. Quintiliani, E.M. Garcia-Frutos, P. Vazquez, T. Torres, Inorg. Biochem. 102
(2008) 388.
[18] J.L. Sessler, J. Jayawickramarajah, A. Gouloumis, G. Dan Pantos, T. Torres, D.M.
Guldi, Tetrahedron 62 (2006) 2123.
[19] U. Michelsen, G. Schnurpfeil, A.K. Sobbi, D. Wohrle, H. Kliesch, Photochem.
Photobiol. 64 (1996) 694.
HOMOꢀ5 are located on the 2py + pz/2px + py orbitals with
metry of B and C moieties, ppz orbitals of the CH@N and C„N
groups and similarly related –p orbitals with same symmetry/en-
p-sym-
p
[20] N. Nombona, E. Antunes, T. Nyokong, Dyes Pigm. 86 (2010) 68.
[21] A.Y. Tolbin, A.Y. Sukhorukov, S.L. Ioffe, O.A. Lobach, D.N. Nosik, L.G. Tomilova,
Mendeleev Commun. 20 (2010) 25.
[22] G. Mbambisa, T. Nyokong, Polyhedron 27 (2008) 2799.
[23] B.Sß. Sesalan, A. Koca, A. Gul, Dyes Pigm. 79 (2008) 259.
[24] D.D. Perin, W.L.F. Armarego, Purification of Laboratory Chemicals, Pergamon,
Oxford, 1989.
ergy of the O2 group with small contributions [35,55].
The LUMO and LUMO+1 are also a set of quasi degenerated orbi-
tals. These orbitals show a predominant character of the C moiety
(including 2py + pz– character), CH@N/C„N groups (including
r⁄ p⁄ character) and oxygen atom O3 (including ppꢂz-character)
A
combinations. On the other hand, the LUMO+2 is composed of orbi-
[25] R. Ustabasß, U. Çoruh, K. Sancak, M. Er, E.M. Vazquez-Lopez, Acta Crytallogr.,
tal sets with
r
/
⁄ p⁄-symmetry of the A annular, C„N/CH@N groups,
Sect. E 63 (2007) o2452.
[26] G.J. Young, W. Onyebuagu, J. Org. Chem. 55 (1990) 2155.
olefinic carbons C@C and oxygen atom O1. Similarly, the LUMO+3
has an important contribution of the A ring, CH@N/CH@N groups,
ACH2 and O1 atoms. The intensity of these transitions has been as-
sessed from the oscillator strength (f). All these transitions are of
_
[27] I. Deg˘irmenciog˘lu, E. Atalay, M. Er, Y. Köysal, Sß. Isßık, K. Serbest, Dyes Pigm. 84
(2010) 69.
[28] J.V. Bakboord, M.J. Cook, E. Hamuryudan, J. Porphyrins Phthalocyanines 4
(2000) 510.
[29] G. Schimid, M. Sommerauer, M. Geyer, M. Hanack, in: C.C. Leznoff, A.B.P. Lever
(Eds.), Phthalocyanines Properties and Applications, vol. 4, VCH Publishers,
Inc., New York, 1996, pp. 1–18.
intra-ligand n(r p
) ? r⁄ and n( ) ? p⁄ charge transfer origin (LLCT)
transitions [56,57]. The involved orbitals in these transitions are
presented in Fig. 5 and the most relevant electronic transitions
are present in Table 1.
[30] G. De la Torre, C.G. Claessens, T. Torres, Eur. J. Org. Chem. 32 (2000) 2821.
_
[31] M. Özçesßmeci, I. Özçesßmeci, E. Hamuryudan, Polyhedron 29 (2010) 2710.
[32] Y. Arslanog˘lu, A. Koca, E. Hamuryudan, Polyhedron 26 (2007) 891.
[33] D. KulacÂ, M. Bulut, A. Altindal, A.R. Özkaya, B. Salih, Ö. Bekarog˘lu, Polyhedron
26 (2007) 5432.
5. Conclusion
[34] M. Brewis, G.J. Clarkson, M. Helliwell, A.M. Holder, N.B. McKeown, Chem. Eur. J.
6 (2000) 4630.
_
[35] K. Serbest, I. Deg˘irmenciog˘lu, Y. Ünver, M. Er, C. Kantar, K. Sancak, J.
In this paper, we have reported on the preparation of a new type
of an olefinic centred metal free and metallophthalocyanines (Zn,
Ni, Co and Cu) of clamshell type. In the first stage, substituted
Schiff Base analogue was obtained from condensation of 1 and 2
with no solvent. Then, compound 5 was synthesized from a mix-
ture of 3 and 4 (2:1) in the presence of DMF/K2CO3 as key structure
to give expected pcs. In the final stage, metal free and metallopht-
halocyanines of clamshell type were synthesized by the interaction
of diphthalonitrile 5 with excess of phthalonitrile 6 in DMAE/DBU
and corresponding metal salts. The preparations of the new prod-
ucts are supported by elemental analysis, IR, UV–Vis, 1H/13C NMR
and mass spectra.
Organomet. Chem. 692 (2007) 5646.
_
[36] I. Deg˘irmenciog˘lu, R. Bayrak, M. Er, K. Serbest, Dyes Pigm. 83 (2009) 51.
_
[37] H. Kantekin, I. Deg˘irmenciog˘lu, Y. Gök, Acta. Chem. Scand. 53 (1999) 247.
_
[38] I. Deg˘irmenciog˘lu, S. Karaböcek, N. Karaböcek, M. Er, K. Serbest, Monatsh.
Chem. 134 (2003) 875.
_
[39] Y. Gök, H. Kantekin, I. Deg˘irmenciog˘lu, Supramol. Chem. 15 (2003) 335.
_
[40] Y. Gök, H. Kantekin, A. Bilgin, D. Mendil, I. Deg˘irmenciog˘lu, Chem. Commun.
(2001) 285.
[41] B. Akkurt, E. Hamuryudan, Dyes Pigm. 79 (2008) 153.
_
[42] H. Kantekin, I. Deg˘irmenciog˘lu, Y. Gök, Acta. Chem. Scand. 53 (1998) 247.
[43] J. Janczak, R. Kubiak, M.G. Ledz, H. Borrmann, Y. Grin, Polyhedron 22 (2003)
2689.
[44] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[45] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[46] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Akajima, H. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann,
O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochtersk, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komarom, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C.G. Onzalez, J.A.
Pople, GAUSSIAN-03, Revision C.02, Gaussian, Inc., Pittsburgh, PA, 2003.
[47] M. Grof, A. Gatial, V. Milata, N. Pronayova, J. Kozisek, M. Breza, P. Matejka, J.
Mol. Struct. 938 (2009) 97.
Acknowledgement
This work was supported by The Research Fund of Karadeniz
Technical University, Projects No: 2007.111.002.9 and 2010.111.
002.3 (Trabzon/Turkey).
References
[1] C.C. Leznoff, A.B.P. Lever (Eds.), Phthalocyanines: Properties and Applications,
vol. 1–4, VCH Publishers, New York, 1989–1992–1993.
[2] N.B. McKeown, Phthalocyanine Materials, Cambridge University Press,
Cambridge, 1998.
[48] M. Grof, A. Gatial, P. Matejka, J. Kozisek, V. Milata, N. Pronayova, J. Mol. Struct.
924–926 (2009) 54.
[3] A.L. Thomas, Phthalocyanine Research and Applications, CRC Press, USA, 1990.