D
M. Miyagawa et al.
Letter
Synlett
O
OMe
OMe
OMe
2f (6.0 equiv)
8 (10 mol%)
H
N
Ar1
N
Ar1
MS (3 Å)
toluene, reflux, 2 d
S
NO2
H
9
10
2f
N
H
Ar2
O
N
H
Cl
O
10a
60%, 92% ee
10b
60%, 96% ee
P
OH
O
Ar2
N
H
Ar2 = 2,4,6-(i-Pr)3C6H2
8
10c
66%, 84% ee
Scheme 6 Asymmetric synthesis of 2-substituted quinolines
Supporting Information
2014, 114, 9047. (f) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M.
Chem. Rev. 2017, 117, 10608. (g) Merad, J.; Lalli, G.; Bernadat, G.;
Maur, J.; Masson, G. Chem. Eur. J. 2018, 24, 3925.
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
(10) For pioneering works on chiral phosphoric acid-catalyzed
transfer hydrogenation of ketimines by using the Hantzsch ester
as a hydrogen donor, see: (a) Rueping, M.; Sugiono, E.; Azap, C.;
Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781. (b) Hoffmann,
S.; Seayad, A.; List, B. Angew. Chem. Int. Ed. 2005, 44, 7424.
(c) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2006, 128, 84; For selected reviews, see. (d) Rueping,
M.; Sugiono, E.; Schoepke, F. R. Synlett 2010, 852. (e) Zheng, C.;
You, S.-L. Chem. Soc. Rev. 2012, 41, 2498.
(11) For an enantioselective metal-free cascade reaction with
a chiral phosphoric acid, see: Rueping, M.; Antonchick, A. P.;
Theissmann, T. Angew. Chem. Int. Ed. 2006, 45, 3683.
(12) Shibata, Y.; Yamanaka, M. J. Org. Chem. 2013, For a theoretical
study on chiral phosphoric acid-catalyzed transfer hydrogena-
tion using a benzothiazoline, see: 78, 3731.
References and Notes
(1) (a) Downing, R. S.; Kunkeler, P. J.; van Bekkum, H. Catal. Today
1997, 37, 121. (b) Lawrence, S. A. Amines: Synthesis, Properties
and Applications; Cambridge University Press: Cambridge,
2004. (c) MacDiarmid, A. G. Synth. Met. 1997, 84, 27.
(2) For reviews, see: (a) Kadam, H. K.; Tilve, S. G. RSC Adv. 2015, 5,
83391. (b) Blaser, H.-U.; Steiner, H.; Studer, M. ChemCatChem
2009, 1, 210. (c) Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.;
Benaglia, M. Org. Process Res. Dev. 2018, 22, 430. (d) Aditya, T.;
Pal, A.; Pal, T. Chem. Commun. 2015, 51, 9410.
(3) Béchamp, A. Ann. Chim. Phys. 1854, 42[3], 186.
(4) Blaser, H.-U. Chimia 2015, 69, 393.
(13) 2-Aryl-1,2,3,4-tetrahydroquinolines 10a–c; General Proce-
dure
(5) (a) Porta, R.; Puglisi, A.; Colombo, G.; Rossi, S.; Benaglia, M. Beil-
stein J. Org. Chem. 2016, 12, 2614. (b) Orlandi, M.; Tosi, F.;
Bonsignore, M.; Benaglia, M. Org. Lett. 2015, 17, 3941.
(c) Orlandi, M.; Benaglia, M.; Tosi, F.; Annunziata, R.; Cozzi, F.
J. Org. Chem. 2016, 81, 3037.
(6) Giomi, D.; Alfini, R.; Brandi, A. Tetrahedron 2011, 67, 167.
(7) Chen, D.; Zhou, Y.; Zhou, H.; Liu, S.; Liu, Q.; Zhang, K.; Uozumi,
Y. Synlett 2018, 29, 1765.
(8) (a) Zhu, C.; Akiyama, T. Org. Lett. 2009, 11, 4180. (b) Zhu, C.;
Saito, K.; Yamanaka, M.; Akiyama, T. Acc. Chem. Res. 2015, 48,
388. (c) Zhu, C.; Akiyama, T. Synlett 2011, 1251.
(9) For seminal papers on chiral phosphoric acid catalysis, see:
(a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int.
Ed. 2004, 43, 1566. (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc.
2004, 126, 5356. For selected reviews, see: (c) Akiyama, T. Chem.
Rev. 2007, 107, 5744. (d) Terada, M. Synthesis 2010, 1929.
(e) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev.
Under a N2 atmosphere, a mixture of the appropriate ketone 9
(0.10 mmol), benzothiazoline 2f (0.60 mmol), chiral phosphoric
acid 8 (0.010 mmol), and MS 3Å (600 wt%, activated) in toluene
(1.0 mL) was refluxed for 2 days. When the reaction was com-
plete (TLC), it was quenched by adding sat. aq NaHCO3. The
crude mixture was filtered through a Celite pad and extracted
with EtOAc (×3). The organic extracts were combined, washed
with brine, dried (Na2SO4), and concentrated in vacuo. The
residue was purified by preparative TLC.
2-Phenyl-1,2,3,4-tetrahydroquinoline (10a)
White solid; yield: 13 mg (60%, 92% ee); mp 52–54 °C; []D24 –42
(c 0.75, CHCl3). 1H NMR (400 MHz, CDCl3): = 1.94–2.05 (m, 1
H), 2.09–2.15 (m, 1 H), 2.74 (dt, J = 4.8, 16.4 Hz, 1 H), 2.93 (ddd,
J = 5.6, 10.8, 16.4 Hz, 1 H), 4.04 (br s, 1 H), 4.43 (dd, J = 3.4, 9.2
Hz, 1 H), 6.53 (d, J = 8.4 Hz, 1 H), 6.65 (t, J = 7.6 Hz, 1 H), 6.99–
7.02 (m, 2 H), 7.24–7.40 (m, 5 H). 13C NMR (100 MHz, CDCl3):
= 26.4, 31.0, 56.3, 114.0, 117.2, 120.9, 126.6, 126.9, 127.5,
128.6, 129.3, 144.7, 144.8.
Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–D