To examine the new allylic transposition concept, we
required an economic10 access to eight-membered siloxa-
cycles. This needwas easilyaddressedby anintramolecular
allyl transferÀalcoholysis of silylalkynes11 (Scheme 1)
followed by ring-closing metathesis (RCM)12 of corre-
sponding silyl ethers 1. Considering the ring strain of
siloxadienes 2, a negative factor for its formation via
RCM but a prerequisite for the subsequent allylic trans-
position to 3, the presence of an extra double bond in the
form of a vinylsilyl moiety in the siloxacycle platform 2 is
critical for its formation and ring contraction.
The allylic transpositionwithmedium-sized ringsystems
involving ring contraction is expected to be regioselective
due totwo mainfactors. First, the endocyclicdoublebonds
in most medium rings are cis-, which would have a sig-
nificant driving force to become a trans-double bond after
the ring contraction. Second, due to their transannular
interactions, the medium-sized rings are generally more
strained than their smaller counterparts. Among medium-
sized rings, the ring contraction of eight-membered rings
to the corresponding six-membered rings would be most
favorable because this transformation would induce more
relief of ring straincomparedtothe process involving other
rings. As a platform for the development of an allylic
transposition strategy, we became interested in a 1,5-dien-
4-ol motif containing a (Z)-trisubstituted double bond for
it is a common structural feature found in many biologi-
cally active natural products including zampanolide,4b,6
bryostatin 1,7 rubifolide,8 and various amphidinolides.9
Herein we describe a successful implementation of the ring
strain-driven allylic transposition employing eight-mem-
bered siloxadienes as an efficient method for the synthesis
of (Z)-trisubstituted vinylsilanes containing a 1,5-dien-4-ol
moiety.
Scheme 1. Ring Contraction of Eight-Membered Siloxacycles
and Their Synthesis
(6) (a) Tanaka, J.; Higa, T. Tetrahedron Lett. 1996, 37, 5535–5538. (b)
Smith, A. B., III; Safonov, I. G.; Corbett, R. M. J. Am. Chem. Soc. 2001,
123, 12426–12427. (c) Smith, A. B., III; Safonov, I. G.; Corbett, R. M.
J. Am. Chem. Soc. 2002, 124, 11102–11113. (d) Hoye, T. R.; Hu, M.
J. Am. Chem. Soc. 2003, 125, 9576–9577. (e) Uenishi, J.; Iwamoto, T.;
Tanaka, J. Org. Lett. 2009, 11, 3262–3265. Dactylolide syntheses: (f)
Smith, A. B., III; Safonov, I. G. Org. Lett. 2002, 4, 635–637. (g) Ding, F.;
Jennings, M. P. Org. Lett. 2005, 7, 2321–2324. (h) Aubele, D. L.; Wan,
S.; Floreancig, P. E. Angew. Chem., Int. Ed. 2005, 44, 3485–3488. (i)
Sanchez, C. C.; Keck, G. E. Org. Lett. 2005, 7, 3053–3056. (j) Louis, I.;
Hungerford, N. L.; Humphries, E. J.; McLeod, M. D. Org. Lett. 2006, 8,
1117–1120.
(7) (a) Pettit, G. R.; Herald, C. L.; Clardy, J.; Arnold, E.; Doubek,
D. L.; Herald, D. L. J. Am. Chem. Soc. 1982, 104, 6846–6848. Bryostatins
syntheses: A comprehensive review: (b) Hale, K. J.; Hummersone, M. G.;
Manaviazar, S.; Frigerio, M. Nat. Prod. Rep. 2002, 19, 413–453. (c)
Kageyama, M.; Tamura, T.; Nantz, M. H.; Roberts, J. C.; Somfai, P.;
Whritenour, D. C.; Masamune, S. J. Am. Chem. Soc. 1990, 112, 7407–7408.
(d) Evans, D. A.; Carter, P. H.; Carreira, E. M.; Prunet, J. A.; Charette,
A. B.; Lautens, M. Angew. Chem., Int. Ed. 1998, 37, 2354–2359. (e) Trost,
B. M.; Dong, G. Nature 2008, 456, 485–488.
Our strategy was first tested with benzyloxymethyl-
substituted silylalkyne (R1 = CH2OBn) and allyl alcohol
(Table 1). An intramolecular allyl transfer reaction driven
by an alcoholysis afforded silyl ether 1a in high yield with
(Z)-stereochemistry (entry 1). Thesilyl ether1awas treated
with Grubbs second-generation catalyst (G-II) for 4 h at
25 °C in CH2Cl2, affording eight-membered siloxacycle 2a
in 96% yield.
The proposed ring contraction was demonstrated by
treatment of 2awith a catalytic amount of Re2O7 (5 mol %,
ether, 25 °C, 3 h), providing siloxene 3a in 49% yield.
Although the yield was marginal, this clearly illustrated the
feasibility of the proposed reaction sequence. The low yield
of the ring contraction is most likely to be the consequence
(8) (a) Williams, D.; Andersen, R. J.; Van Duyne, G. D.; Clardy, J.
ꢀ
J. Org. Chem. 1987, 52, 332–335. (b) Sanchez, M. C.; Ortega, M. J.;
Zubıa, E.; Carballo, J. L. J. Nat. Prod. 2006, 69, 1749–1755. (c)
´
(10) (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695–705. (b) Trost,
B. M. Angew. Chem., Int. Ed. 1995, 34, 259–281. (c) Trost, B. M. Science
1991, 254, 1471–1477. (d) Wender, P. A.; Bi, F. C.; Gamber, G. G.;
Gosselin, F.; Hubbard, R. D.; Scanio, M. J. C.; Sun, R.; Williams, T. J.;
Zhang, L. Pure Appl. Chem. 2002, 74, 25–31. (e) Wender, P. A.; Miller,
B. L. Nature 2009, 460, 197–201.
(11) Park, S.; Lee, D. J. Am. Chem. Soc. 2006, 128, 10664–10665.
(12) (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413–4450.
(b) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371–388. (c)
Blechert, S. Pure Appl. Chem. 1999, 71, 1393–1399. (d) Furstner, A.
Angew. Chem., Int. Ed. 2000, 39, 3012–3043. (e) Handbook of Metath-
esis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, Germany, 2003; Vol. 2. (f)
Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199–2238. (g)
Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed.
2005, 44, 4490–4527. For enyne metathesis: (h) Giessert, A. J.; Diver,
S. T. Chem. Rev. 2004, 104, 1317–1382. (i) Poulsen, C. S.; Madsen, R.
Synthesis 2003, 1, 1–18. (j) Mori, M. In Handbook of Metathesis; Grubbs,
R. H., Ed.; Wiley-VCH: Weinheim, Germany, 2003; Vol. 2, pp 176À204.
Marshall, J. A.; Sehon, C. A. J. Org. Chem. 1997, 62, 4313–4320. (d)
Marshall, J. A.; Van Devender, E. A. J. Org. Chem. 2001, 66, 8037–8041.
(e) Roethle, P. A.; Hernandez, P. T.; Trauner, D. Org. Lett. 2006, 8,
5901–5904.
(9) (a) Kobayashi, J.; Ishibashi, M.; Nakamura, H.; Ohizumi, Y.
Tetrahedron Lett. 1986, 27, 5755–5758. (b) Lam, H. W.; Pattenden, G.
Angew. Chem., Int. Ed. 2002, 41, 508–511. (c) Trost, B. M.; Wrobleski,
S. T.; Chisholm, J. D.; Harrington, P. E.; Jung, M. J. Am. Chem. Soc.
2005, 127, 13589–13597. (d) Kobayashi, J.; Ishibashi, M.; Murayama,
T.; Takamatsu, M.; Iwamura, M.; Ohizumi, Y.; Sasaki, T. J. Org. Chem.
1990, 55, 3421–3423. (e) Va, P.; Roush, W. R. J. Am. Chem. Soc. 2006,
128, 15960–15961. (f) Kim, C. H.; An, H. J.; Shin, W. K.; Yu, W.; Woo,
S. K.; Jung, S. K.; Lee, E. Angew. Chem., Int. Ed. 2006, 45, 8019–8021.
(g) Kobayashi, J.; Sato, M.; Ishibashi, M. J. Org. Chem. 1993, 58, 2645–
2646. (h) Barbazanges, M.; Meyer, C.; Cossy, J. Org. Lett. 1993, 10,
4489–4492. (i) Kubota, T.; Tsuda, M.; Kobayashi, J. Tetrahedron Lett.
€
€
2000, 41, 713–716. (j) Furstner, A.; Larionov, O.; Flugge, S. Angew.
Chem., Int. Ed. 2007, 46, 5545–5548.
Org. Lett., Vol. 13, No. 13, 2011
3531