Journal of the American Chemical Society
COMMUNICATION
Santelli, M. Tetrahedron Lett. 2003, 44, 8487–8491. (f) Advances in
asymmetric Heck methodology: Dounay, A. B.; Overman, L. E. Chem.
Rev. 2003, 103, 2945–2964.
synthetically inaccessible aryldiazonium salts. See Supporting Informa-
tion for details.
(14) See Supporting Information for details.
(2) For examples of the oxidative Heck reaction, see: (a) Du, X.;
Suguro, M.; Hirabayashi, K.; Mori, A.; Nishikata, T.; Hagiwara, N.; Kawata,
T.; Okeda, T.; Wang, H. F.; Fugami, K.; Kosugi, M. Org. Lett. 2001,
3, 3313–3316. (b) Parrish, J. P.; Jung, Y. C.; Shin, S. I.; Jung, K. W. J. Org.
Chem. 2002, 67, 7127–7130. (c)Jung, Y. C.;Mishra, R. K.;Yoon, C. H.;Jung,
K. W. Org. Lett. 2003, 5, 2231–2234. (d) Andappan, M. M. S.; Nilsson, P.;
von Schenck, H.; Larhed, M. J. J. Org. Chem. 2004, 69, 5212–5218. (e) Yoo,
K. S.; Yoon, C. H.;Jung, K. W. J. Am. Chem. Soc. 2006, 128, 16384–16393. (f)
Jia, C.; Piao, D.; Oyamada, J.; Lu, W.; Kitamura, T.; Fujiwara, Y. Science 2000,
287, 1992–1995. (g) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009,
131, 5072–5074. (h) Zhang, X.; Fan, S.; He, C.-Y.; Wan, X.; Min, Q.-Q.;
Yang, J.; Jiang, Z.-X. J. Am. Chem. Soc. 2010, 132, 4506–4507.
(15) Interestingly, allylic products 5Allyl were typically favored under
oxidative Heck conditions, while they were the minor products under
these conditions regardless of arene. See Supporting Information for
details.
(16) For examplesofHammettanalysesofotherHeckreactions, see:(a)
Benhaddou, R.; Czernecki, S.; Ville, G.; Zegar, A. Organometallics 1988,
7, 2435–2439. (b) Fristrup, P.; Le Quement, S.; Tanner, D.; Norrby, P. O.
Organometallics 2004, 23, 6160–6165.
(17) The modest slope of the Hammett plot may explain why no
trend was apparent when attempting to construct a similar Hammett
plot using a β,γ-unsaturated ester as the substrate. It is likely that the
hydridic nature of benzylic hydrogens is significantly different from that
of hydrogens R to an ester.
(3) Additional byproducts can arise from Heck insertion in the
opposite orientation resulting in terminal olefin products, and internal
olefin isomeric products arising from PdÀH migration. (Z)-Olefin
isomers may also be observed.
(4) Werner, E. W.; Sigman, M. S. J. Am. Chem. Soc. 2010,
132, 13981–13983.
(5) For seminal work, see: (a) Kikukawa, K.; Nagira, K.; Wada, F.;
Matsuda, T. Tetrahedron 1981, 37, 31–36. For reviews of the use of
aryldiazonium salts in Pd-catalyzed cross-coupling reactions, see: (b) Roglans,
A.; Pla-Quintana, A.; Moreno-Manas, M. Chem. Rev. 2006, 106, 4622–4643.
(c) Taylor, J. G.; Moro, A. V.; Correia, C. R. D. Eur. J. Org. Chem.
2011, 1403–1428. For a mechanistic study of the MatsudaÀHeck
reaction, see: (d) Sabino, A. A.; Machado, A. H. L.; Correia, C. R. D.; Eberlin,
M. N. Angew. Chem., Int. Ed. 2004, 43, 2514–2518. For a recent example
utilizing in situ-prepared aryldiazonium salts, see: (e) Callonnec, F. L.;
Fouquet, E.; Felpin, F.-X. Org. Lett. 2011, 13, 2646–2649.
(6) The pKa of the conjugate acid provides a commonly used
estimation of the coordinative abilities of counterions in catalysis; the
pKa of HBF4 is À5.
(7) Throughout the paper, when isomers are detected they arise
either from migratory insertion in the opposite direction to give terminal
olefin products or from olefin migration via nonselective β-hydride
elimination. (Z)-Olefin isomers were not observed.
(8) A minor byproduct arises from a subsequent Heck reaction of
the resultant styrene utilizing the remainder of the aryldiazonium salt.
The desired product is also believed to be oligomerized in the reaction
mixture overtime, likely due to the equivalent of HBF4 generated in the
reaction. See Supporting Information for details.
(9) Allylic acetates are known to be displaced by Pd0 to form π-allyl
complexes. For a review, see: Trost, B. M Angew. Chem., Int. Ed. 1989,
28, 1173.
(10) More basic nitrogen functionality, such as a trialkyl amine-
containing substrate, was incompatible with these conditions. Other
incompatible functionality included quinoline and indole arenes. See
Supporting Information for further details.
(11) For examples of chelation-controlled Heck reactions, see: (a)
Filippini, L.; Gusmeroli, M.; Riva, R. Tetrahedron Lett. 1993,
34, 1643–1646. (b) Kang, S. K.; Lee, H. W.; Jang, S. B.; Kim, T. H.;
Pyun, S. J. J. Org. Chem. 1996, 61, 2604–2605. (c) Olofsson, K.; Sahlin,
H.; Larhead, M.; Hallberg, A. J. Org. Chem. 2001, 66, 544–549. (d)
Buezo, N. D.; Rosa, J. C.; Priego, J.; Alonso, I.; Carretoero, J. C. Chem.
Eur. J. 2001, 7, 3890–3900. (e) Delcamp, J. H.; Brucks, A. P.; White,
M. C. J. Am. Chem. Soc. 2008, 130, 11270–11271.
(12) Ketones like 6 are usually the major product observed using free
allylic alcohols under Heck conditions; see above references.
(13) It is important to note that, while most aryldiazonium salts
submitted to this reaction performed well, there are several examples of
9695
dx.doi.org/10.1021/ja203164p |J. Am. Chem. Soc. 2011, 133, 9692–9695