Beilstein J. Org. Chem. 2011, 7, 831–838.
Head of Process Research, Custom Pharmaceutical Services
(CPS) for his constant help and encouragement. Satish S. More
thanks CPS-DRL, Hyderabad, India for allowing him to pursue
this work as a part of a PhD Programme. Cooperation extended
by all colleagues in the analytical division is gratefully
acknowledged.
References
1. Ohno, H. Vinyl aziridines in Organic Synthesis. In Aziridines and
Epoxides in Organic Synthesis; Yudin, A. K., Ed.; Wiley-VCH:
Weinheim, Germany, 2006; Chapter 2.
2. Crotti, S.; Bertolini, F.; Macchia, F.; Pineschi, M. Org. Lett. 2009, 11,
Scheme 6: Reaction conditions: i) THF, TEA, rt; ii) NaI, acetone, rt,
overnight.
3. Fujii, N.; Nakai, K.; Tamamura, H.; Otaka, A.; Mimura, N.; Miwa, Y.;
Taga, T.; Yamamoto, Y.; Ibuka, T. J. Chem. Soc., Perkin Trans. 1
4. Wipf, P.; Fritch, P. C. J. Org. Chem. 1994, 59, 4875–4886.
an alkyl or aryl/heteroaryl substitution on the α-carbon of the
vinyl group, to afford novel 5-alkyl/aryl/heteroaryl substituted
diethyl 3,4-dihydro-2H-pyrrole-4,4-dicarboxylates in good
yields. The impact of the various electron donating and elec-
tron withdrawing substituents, as well as hindered and less
bulky substituents on iodide ion mediated aziridine ring expan-
sion, was also studied. Several novel diethyl 5-alkyl/aryl/
heteroaryl-3,4-dihydro-2H-pyrrole-4,4-dicarboxylate deriva-
tives were synthesized using this novel method. We also
demonstrated the conversion of these diesters to the corres-
ponding 2-substituted pyrrolines and 2-substituted-4,5-dihydro-
3-carbethoxy-pyrroline derivatives which can be very useful
synthetic intermediates for the synthesis of various pyrroline
and pyrrolidine derivatives. The synthesis of some natural prod-
ucts using this approach is currently underway.
5. Ibuka, T.; Nakai, K.; Habashita, H.; Hotta, Y.; Fujii, N.; Taga, T.;
Mimura, N.; Miwa, Y.; Yamamoto, Y. Angew. Chem., Int. Ed. Engl.
6. Disadee, W.; Ishikawa, T. J. Org. Chem. 2005, 70, 9399–9406.
7. Trost, B. M.; Fandrick, D. R.; Brodmann, T.; Stiles, D. T.
Angew. Chem., Int. Ed. 2007, 46, 6123–6125.
8. Coldham, I.; Collis, A. J.; Mould, R. J.; Rathmell, R. E.
Tetrahedron Lett. 1995, 36, 3557–3560.
9. Åhman, J.; Somfai, P. Tetrahedron Lett. 1995, 36, 303–306.
10.Brichacek, M.; Lee, D.; Njardarson, J. T. Org. Lett. 2008, 10,
11.Fugami, K.; Morizawa, Y.; Ishima, K.; Nozaki, H. Tetrahedron Lett.
12.Atkinson, R. S.; Rees, C. W. Chem. Commun. 1967, 1230–1231.
Supporting Information
Supporting Information File 1
13.Kumar, A.; Ila, H.; Junjappa, H.; Mhatre, S.
J. Chem. Soc., Chem. Commun. 1976, 592–593.
General information, experimental procedures, spectral data
of compounds 18f–18j, 19b,19c, 19f–19g, 19i, 20a–20j,
21a–21j, 23, 24, 28, 29, 31, 32, spectra of 20a, 20c, 20d,
20f, 20g, and 20h (1H NMR, 13C NMR, IR, MS).
14.Rao, M. V. B.; Suresh, J. R.; Kumar, A.; Ila, H.; Junjappa, H.
J. Indian Chem. Soc. 1997, 74, 955–960.
15.Trost, B. M.; Fandrick, D. R. J. Am. Chem. Soc. 2003, 125,
16.Ley, S. V.; Middleton, B. Chem. Commun. 1998, 1995–1996.
Supporting Information File 2
17.Spears, G. W.; Nakanishi, K.; Ohfune, Y. Synlett 1991, 91–92.
1H NMR, 13C NMR, IR, and mass spectra of 21b, 21d,
21g, 21h, 21i, 21j, 23, 24, 28, 29, 31, 32 and HRMS
spectra of 21a–21j, 23, 24, 29, and 32.
18.Fontana, F.; Tron, G. C.; Barbero, N.; Ferrini, S.; Thomas, S. P.;
Aggarwal, V. K. Chem. Commun. 2010, 46, 267–269.
19.Fantauzzi, S.; Gallo, E.; Caselli, A.; Piangiolino, C.; Ragaini, F.; Re, N.;
Cenini, S. Chem.–Eur. J. 2009, 15, 1241–1251.
20.Scheiner, P. J. Org. Chem. 1967, 32, 2628–2630.
Acknowledgements
The authors thank the management of Dr. Reddy’s Labora-
21.Stogryn, E. L.; Brois, S. J. J. Am. Chem. Soc. 1967, 89, 605–609.
tories Ltd. for supporting this work and Dr. Vilas Dahanukar,
837