Organometallics
COMMUNICATION
(2) Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Chem. Rev. 2009,
109, 3479.
b = 12.7546(5) Å, c = 13.0263(5) Å, R = 63.729(2)°, β = 81.404(2)°,
γ = 69.289(2)°, V = 1275.61(8) Å3, R1 = 0.0249 for 5502 observed
reflections (I > 2σ(I)), wR2 = 0.0630 (all data).
(18) Wang, X.; Ni, C.; Zhu, Z.; Fettinger, J. C.; Power, P. P. Inorg.
Chem. 2009, 48, 2464.
(19) Crystal data for 2/3 at 90(2) K with Cu KR radiation
(λ = 0.710 73 Å): triclinic, space group P1, Z = 1, a = 11.9117(8) Å,
b = 13.3946(4) Å, c = 13.7183(5) Å, R = 111.263(2)°, β = 103.040(2)°,
γ = 102.296(2)°, V = 1879.52(15) Å3, R1 = 0.0239 for 10 351 observed
reflections (I > 2σ(I)), wR2 = 0.0633 (all data).
(3) (a) Crabtree, R. H.The Organometallic Chemistry of the Transition
Metals, 4th ed.; Wiley-Interscience: Hoboken, NJ, 2005. (b) Bourissou,
D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39.
(b) Liddle, S. T.; Edworthy, I. S.; Arnold, P. L.Chem. Soc. Rev. 2007, 36, 1732.
(4) Kira, M. J. Organomet. Chem. 2004, 689, 4475.
(5) Hitchcock, P. B.; Lappert, M. F.; Thorne, A. J. J. Chem. Soc.,
Chem. Commun. 1990, 1587.
(6) Cui, C. M.; Olmstead, M. M.; Fettinger, J. C.; Spikes, G. H.;
Power, P. P. J. Am. Chem. Soc. 2005, 127, 17530.
(20) Peng, Y.; Wang, X.; Fettinger, J C.; Power, P. P. Chem. Commun.
2010, 943.
(7) Braunschweig, H.; Hitchcock, P. B.; Lappert, M. F.; Pierssens,
L. J. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 1156.
(21) (a) Yamaguchi, T.; Sekiguchi, A.; Driess, M. J. Am. Chem. Soc.
2010, 132, 14061. (b) Takeuchi, K.; Ichinohe, M.; Sekiguchi, A. J. Am.
Chem. Soc. 2008, 130, 16848. (c) Peng, Y.; Wang, X.; Fettinger, J. C.;
Power, P. P. Chem. Commun. 2010, 943.
(22) Cui, C.; Brynda, M.; Olmstead, M. M.; Power, P. P. J. Am. Chem.
Soc. 2004, 126, 6510.
(8) Braunschweig, H.; Drost, C.; Hitchcock, P. B.; Lappert, M. F.;
Pierssens, L. J. M. Angew. Chem., Int. Ed. Engl. 1997, 36, 261.
(9) (a) Zabula, A. V.; Hahn, F. E.; Pape, T.; Hepp, A. Organometallics
2007, 26, 1972. (b) Hahn, F. E.; Zabula, A. V.; Pape, T.; Hepp, A. Eur. J.
Inorg. Chem. 2007, 17, 2405.
(23) Wang, X.; Peng, Y.; Olmstead, M. M.; Fettinger, J. C.; Power,
P. P. J. Am. Chem. Soc. 2009, 131, 14164.
(10) Wang, W.; Inoue, S.; Yao, S.; Driess, M. J. Am. Chem. Soc. 2010,
132, 15890.
(11) Zhang, S. H.; So, C. W. Organometallics 2011, 30, 2059.
(12) Stender, M.; Phillips, A. D.; Wright, R. J.; Power, P. P. Angew.
Chem., Int. Ed. 2002, 41, 1785–1787.
(13) Pu, L.; Phillips, A. D.; Richards, A. F.; Stender, M.; Simons,
R. S.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2003, 125,
11626–11636.
(14) Luo, Y. R. Handbook of Bond Dissociation Energies in Organic
Compounds, CRC Press: Boca Raton, FL, 2003.
(15) Spikes, G. H.; Peng, Y.; Fettinger, J. C.; Steiner, J.; Power, P. P.
Chem. Commun. 2005, 6041. Numerous attempts at stoichrometric
oxidation of Ar‡SnSnAr‡ or Ar*SnSnAr* (Ar* = C6H3-2,6(C6H2-2,4,
6-Pri3)2) by O2 or N2O with rigorous exclusion of air and moisture
afforded {ArSn(μ-OH)}2 (Ar = Ar‡, Ar*) products which displayed
hydroxide-bridged structures similar to that of 3 as well as some variation
in SnꢀO bond lengths.
(16) All reactions were performed under anaerobic and anhydrous
conditions. 1: to a solution of (Ar0Ge)2 (0.303 g, 0.32 mmol) in 30 mL of
toluene was added dropwise a solution of pyridine N-oxide (0.026 g,
0.32 mmol) at ꢀ78 °C, resulting in a color change from dark red to
orange with a green precipitate upon warming. Heating the solution to
100 °C under static vacuum enabled the dissolution of the green
precipitate, and upon cooling to room temperature overnight, green
crystals of the product 1 were obtained (0.130 g, 0.13 mmol, 42% yield).
Mp: 180 °C dec. 1H NMR (300 MHz, C6D6, 298 K): δ 1.03 (d, 24H,
3
3
o-CH(CH3)2, JHH = 6.9 Hz), 1.20 (d, 24H, o-CH(CH3)2, JHH
=
6.9 Hz), 2.89 (sept, 8H, CH(CH3)2, 3JHH = 6.9 Hz), 7.05ꢀ7.49 ppm (m,
18H, m-C6H3, p-C6H3,m-Dipp, and p-Dipp, Dipp = C6H3-2,6-Pri2).
13C{1H} NMR (C6D6, 100.6 MHz, 298 K): δ 23.7 (CH(CH3)2), 25.4
(CH(CH3)2), 30.8 (CH(CH3)2), 123.6 (m-Dipp), 129.0 (p-C6H3),
129.2 (o-Dipp), 137.2 (m-C6H3), 142.7 (p-Dipp), 146.9 (i-Dipp), 169.1
(o-C6H3). UV: λmax (ε) 450 nm (870 molꢀ1 L cmꢀ1). 2 and 3: to a
solution of (Ar0Sn)2 (0.283 g, 0.27 mmol) in 30 mL of toluene was
added dropwise a solution of pyridine N-oxide (0.022 g, 0.27 mmol)
at ꢀ78 °C, resulting in a color change from dark green to orange with a
red precipitate upon warming. Heating the solution to 100 °C under
static vacuum enabled the dissolution of the red precipitate, and upon
cooling to room temperature overnight, orange crystals of a mixture of 2
and 3 were obtained (0.152 g). 1H NMR (300 MHz, C6D6, 298 K): (2
3
only) δ 1.04 (d, 48H, o-CH(CH3)2, JHH = 6.9 Hz), 3.09 (sept, 8H,
CH(CH3)2, 3JHH = 6.9 Hz), 7.05ꢀ7.49 ppm (m, 18H, m-C6H3, p-C6H3,
m-Dipp, and p-Dipp). 13C{1H} NMR (C6D6, 100.6 MHz, 298 K):
δ 23.8 (CH(CH3)2), 25.8 (CH(CH3)2), 30.6 (CH(CH3)2), 123.8
(m-Dipp), 129.1 (p-C6H3), 130.2 (o-Dipp), 137.8 (m-C6H3), 143.9
(p-Dipp), 146.9 (i-Dipp), 147.4 (o-C6H3). 119Sn{1H} NMR (C6D6, 100.6
MHz, 298 K): δ 903.7 ppm. UV: λmax (ε) 460 nm (1150 molꢀ1 L cmꢀ1).
(17) Crystal data for 1 at 90(2) K with Cu KR radiation
(λ = 0.710 73 Å): triclinic, space group P1, Z = 2, a = 9.1539(3) Å,
3471
dx.doi.org/10.1021/om2004018 |Organometallics 2011, 30, 3468–3471