hindrance of the tert-alcohol moiety (OR2) placed at the
C5 position would make the 6-exo-cyclizing intermediate
much more disfavored. A cyclization precursor was di-
vided into two fragments of A-ring fragment E and CD-
ring fragment F.
Figure 1. Structures of cortistatins AꢀL (1ꢀ11).
The unique structure and characteristic biological prop-
erty of cortistatin A (1) attracted many synthetic chemists,
and five total syntheses,3 two formal syntheses,4 and many
synthetic studies5 have been reported so far. We also
engaged in the synthetic study of cortistatin A (1) and
accomplished a stereoselective synthesis of the core struc-
ture of 1 through a 7-endo-selective intramolecular Heck
reaction,6 which will be described in this paper.
Cortistatin A (1) has a characteristic rearranged steroid
skeleton, particularly with an 8-oxabicyclo[3.2.1]octene
system in the B-ring. Our plan toward the synthesis of its
complex ring system is a direct ring closure giving a seven-
membered carbocycle through an intramolecular Heck-
type reaction (C to B) and subsequent oxa-bridge forma-
tion (B to A) (Figure 2). In the cyclization intermediate for
the Heck reaction, a 7-endo pathway was expected to be
sterically more accessible than a 6-exo pathway, since steric
Figure 2. Retrosynthetic analysis of core structure A and plau-
sible intermediate for intramolecular Heck reaction.
Preparation of the chiral A-ring fragment is summarized
in Scheme 1. CBS reduction toward the known ketone 12,7
prepared from 2-cyclohexenone, gave an allylic alcohol 13
in 95% yield. The absolute stereochemistry and enantio-
meric excess (82ꢀ90% ee) of 13 was determined by
preparing its (þ)- and (ꢀ)-MTPA esters. Subsequent
vanadium-mediated diastereoselective epoxidation and
Swern oxidation provided a chiral epoxy ketone 14 in
good yield. Nucleophilic addition of the lithium enolate
of tert-butyl acetate toward the ketone 14 proceeded only
in the presence of CeF38 to give compound 15 as a single
diastereomer. An NOE experiment revealed that nucleo-
philic attack occurred from the opposite side of the ep-
oxide, which provided a tert-alcohol moiety with the
desired stereochemistry. MOM protection of the tert-
alcohol moiety gave compound 16 in quantitative yield,
(4) (a) Simmons, E. M.; Hardin-Narayan, A. R.; Guo, X.; Sarpong,
R. Tetrahedron 2010, 66, 4696. (b) Simmons, E. M.; Hardin, A. R.; Guo,
X.; Sarpong, R. Angew. Chem., Int. Ed. 2008, 47, 6650. (c) Fang, L.;
Chen, Y.; Huang, J.; Liu, L.; Quan, J.; Li, C.-C.; Yang, Z. J. Org. Chem.
2011, 76, 2479. (d) Liu, L.; Gao, Y.; Che, C.; Wu, N.; Wang, D. Z.; Li
C.-C.; Yang, Z. Chem. Commun. 2009, 662.
(5) (a) Craft, D. T.; Gung, B. W. Tetrahedron Lett. 2008, 49, 5931. (b)
Dai, M.; Danishefsky, S. J. Tetrahedron Lett. 2008, 49, 6610. (c) Dai, M.;
Wang, Z.; Danishefsky, S. J. Tetrahedron Lett. 2008, 49, 6613. (d)
Kotoku, N.; Sumii, Y.; Hayashi, T.; Kobayashi, M. Tetrahedron Lett.
€
ꢀ
2008, 49, 7078. (e) Kurti, L.; Czako, B.; Corey, E. J. Org. Lett. 2008, 10,
5247. (f) Dai, M.; Danishefsky, S. J. Heterocycles 2009, 77, 157. (g)
Magnus, P.; Littich, R. Org. Lett. 2009, 11, 3938. (h) Frie, J. L.; Jeffrey,
C. S.; Sorensen, E. J. Org. Lett. 2009, 11, 5394. (i) Baumgartner, C.; Ma,
S.; Liu, Q.; Stoltz, B. M. Org. Biomol. Chem. 2010, 8, 2915. (j) Yu, F.; Li,
G.; Gao, P.; Gong, H.; Liu, Y.; Wu, Y.; Cheng, B.; Zhai, H. Org. Lett.
2010, 12, 5135. (k) Liu, L. L.; Chiu, P. Chem. Commun. 2011, 47, 3416.
€
For reviews, see:(l) Nising, C. F.; Brase, S. Angew. Chem., Int. Ed. 2008,
47, 9389. (m) Chen, D. Y.-K.; Tseng, C.-C. Org. Biomol. Chem. 2010, 8,
2900. (n) Hardin-Narayan, A. R.; Simmons, E. M.; Sarpong, R. Eur. J.
Org. Chem. 2010, 19, 3553.
(7) Baker, L. A.; Williams, C. M.; Bernhardt, P. V.; Yanik, G. W.
Tetrahedron 2006, 62, 7355.
(6) (a) Kotoku, N.; Sumii, Y.; Hayashi, T.; Kobayashi, M. Hetero-
cycles 2011, DOI: 10.3987/COM-11-12195. (b) Iimura, S.; Overman,
L. E.; Paulini, R.; Zakarian, A. J. Am. Chem. Soc. 2006, 128, 13095.
(8) Kabat, M. M.; Garofalo, L. M.; Daniewski, A. R.; Hutchings,
S. D.; Liu, W.; Okabe, M.; Radinov, R.; Zhou, Y. J. Org. Chem. 2001,
66, 6141.
Org. Lett., Vol. 13, No. 13, 2011
3515