Inorganic Chemistry
COMMUNICATION
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: cora.macbeth@emory.edu.
’ ACKNOWLEDGMENT
The authors thank the donors of the American Chemical
Society Petroleum Research Fund and the Emory University
Research Committee for financial support and Dr. Fred Strobel
for assistance with MS experiments.
Figure 3. (A) HR-ESI mass spectrum of [2] prepared from 16O2 (m/z
568.1778 obsd (568.1773 calcd)); and (B) HR-ESI mass spectrum of
[2] prepared from 18O2 (m/z = 570.1823 obsd (570.1815 calcd)).
’ REFERENCES
and then concentrated to dryness. The crude product was then
recrystallized under an inert atmosphere. The product of this
reaction displayed spectroscopic (1H NMR, IR, ESI-MS, and
UVꢀvis) characteristics identical with those observed for 2. To
verify that dioxygen was the source of the oxygen atom incorpo-
rated in 2 prepared by this route, the reaction was repeated using
18O2 (98%) as the oxidant. High-resolution ESI-MS of the
product isolated from this reaction confirms that the oxygen
atom inserted into the ligand backbone is derived from dioxygen
because the mass-to-charge ratio for 2 prepared from 18O2 (m/z
570.1815) is two units greater than the mass-to-charge ratio
observed for 2 prepared from 16O2 (Figure 3). The reaction of 1
with dioxygen at room temperature was followed using electronic
absorption spectroscopy to estimate the yield of 2 formed
during this reaction (Figure S5 in the Supporting Information).
These experiments suggest that 2 is formed in ∼47% yield during
this reaction. The maximum yield of 2 obtained by either route
does not appear to exceed 50%. Attempts to completely character-
ize the other byproduct of these reactions have not been
successful, but mass spectroscopy of the reaction mixtures
suggests that at least one of the byproducts is the protonated
(uncoordinated) H3LiPr ligand. Studies addressing the mecha-
nisms of these transformations are ongoing. At this point, the
intermediates involved in the formation of 2 from the diiron(II)
complex 1 are unknown. We speculate, however, that this
reaction may proceed via high-valent diiron intermediates that
contain μ-oxo, μ-hydroxo, or, in the case of the dioxygen
reaction, μ-peroxo bridging ligands because both PhIO (an
oxygen-atom-transfer reagent) and dioxygen can be used as
oxidants in this CꢀH activation reaction.
(1) Sazinsky, M. H.; Lippard, S. J. Acc. Chem. Res. 2006, 39, 558.
(2) Wallar, B. J.; Lipscomb, J. D. Chem. Rev. 1996, 96, 2625.
(3) Merkx, M.; Kopp, D. A.; Sazinsky, M. H.; Blazyk, J. L.; Muller, J.;
Lippard, S. J. Angew. Chem., Int. Ed. 2001, 40, 2782.
(4) Sazinsky, M. H.; Bard, J.; Di, D. A.; Lippard, S. J. J. Biol. Chem.
2004, 279, 30600.
(5) Friedle, S.; Reisner, E.; Lippard, S. J. Chem. Soc. Rev. 2010,
39, 2768.
(6) Friedle, S.; Lippard, S. J. Eur. J. Inorg. Chem. 2009, 5506.
(7) Lippard, S. J. Philos. Trans. R. Soc. A 2005, 363, 861.
(8) Tshuva, E. Y.; Lee, D.; Bu, W.; Lippard, S. J. J. Am. Chem. Soc.
2002, 124, 2416.
(9) Kryatov, S. V.; Chavez, F. A.; Reynolds, A. M.; Rybak-Akimova,
E. V.; Que, L., Jr.; Tolman, W. B. Inorg. Chem. 2004, 43, 2141.
(10) Tolman, W. B.; Que, L., Jr. J. Chem. Soc., Dalton Trans.
2002, 653.
(11) Chavez, F. A.; Ho, R. Y. N.; Pink, M.; Young, V. G., Jr.; Kryatov,
S. V.; Rybak-Akomova, E. V.; Andres, H.; Munck, E.; Que, L., Jr.;
Tolman, W. B. Angew. Chem., Int. Ed. 2002, 41, 149.
(12) Payne, S. C.; Hagen, K. S. J. Am. Chem. Soc. 2000, 122, 6399.
(13) Cohen, J. D.; Payne, S.; Hagen, K. S.; Sanders-Loehr, J. J. Am.
Chem. Soc. 1997, 119, 2960.
(14) Wang, D.; Farquhar, E. R.; Stubna, A.; Munck, E.; Que, L. Nat.
Chem. 2009, 1, 145.
(15) Jones, M. B.; MacBeth, C. E. Inorg. Chem. 2007, 46, 8117.
(16) Paraskevopoulou, P.; Ai, L.; Wang, Q.; Pinnapareddy, D.;
Acharyya, R.; Dinda, R.; Das, P.; C-elenligil-C-etin, R.; Floros, G.; Sanakis,
Y.; Choudhury, A.; Rath, N. P.; Stavropoulos, P. Inorg. Chem. 2009,
49, 108.
(17) Lee, A. V.; Schafer, L. L. Eur. J. Inorg. Chem. 2007, 2243.
(18) Yang, L.; Powell, D. R.; Houser, R. P. Dalton Trans. 2007, 955.
(19) Lee, D.; Lippard, S. J. Inorg. Chem. 2002, 41, 2704.
(20) Herold, S.; Lippard, S. J. J. Am. Chem. Soc. 1997, 119, 145.
(21) Reinaud, O. M.; Theopold, K. H. J. Am. Chem. Soc. 1994,
116, 6979.
(22) Mahapatra, S.; Halfen, J. A.; Wilkinson, E. C.; Que, L., Jr.;
Tolman, W. B. J. Am. Chem. Soc. 1994, 116, 9785.
(23) Allen, W. E.; Sorrell, T. N. Inorg. Chem. 1997, 36, 1732.
(24) Addison, A. W.; Rao, T. N.; Reedijk, J.; Van Rijn, J.; Verschoor,
G. C. J. Chem. Soc., Dalton Trans. (1972ꢀ1999) 1984, 1349.
(25) O’Keefe, B. J.; Breyfogle, L. E.; Hillmyer, M. A.; Tolman, W. B.
J. Am. Chem. Soc. 2002, 124, 4384.
In summary, we have shown that a diiron(II) complex containing
bridging amidate ligands can promote intramolecular aliphatic
CꢀH activation of an isopropyl group. We have demonstrated
that both an oxygen-atom-transfer reagent and dioxygen can be
used as oxidants in this reaction. This study supports the idea that
chelating ligand scaffolds that incorporate amidate ligands are
promising candidates for the development of functional models
of diiron(II) hydroxylase enzymes. Future studies will focus on
identifying the intermediates involved in these reactions and
exploring ligand scaffolds that are resistant to intramolecular
oxidation reactions so that intermolecular, catalytic hydroxyla-
tion reactions may be realized.
(26) Taktak, S.; Kryatov, S. V.; Rybak-Akimova, E. V. Inorg. Chem.
2004, 43, 7196.
(27) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson,
D. G.; Taylor, R. J. Chem. Soc., Dalton Trans. (1972ꢀ1999) 1989, S1.
’ ASSOCIATED CONTENT
S
Supporting Information. Complete experimental details
b
and CIF files for all compounds. This material is available free of
6404
dx.doi.org/10.1021/ic2007183 |Inorg. Chem. 2011, 50, 6402–6404