3022
A. Haahr et al. / Tetrahedron Letters 52 (2011) 3020–3022
as an oil: Rf [SiO2, Et2O–Pet. ether (1:1)] 0.66. dH (400 MHz, CDCl3) 0.86 (3H, t,
J = 6.8 Hz, CH3), 1.16–1.44 (8H, m, 4 ꢁ CH2), 2.22–2.32 (1H, m, 20-H), 2.60 (1H,
dd, J = 13.4, 7.6 Hz, 10-CHAHB), 2.65 (1H, dd, J = 13.5, 6.7 Hz, 10-CHAHB), 4.85 (1H,
ddd, J = 17.0, 2.0, 0.8 Hz, @CHCHD), 4.92 (1H, ddd, J = 10.3, 2.0, 0.3 Hz, @CHCHD),
5.53–5.59 (1H, m, @CH), 7.11–7.19 (3H, m, ArH), 7.23–7.30 (2H, m, ArH); dC
(100 MHz, CDCl3) 14.1 (CH3), 22.6 (CH2), 23.8 (CH2), 31.9 (CH2), 34.1 (CH2), 41.8
(CH2), 45.7 (CH), 114.4 (CH2), 125.7 (CH), 128.0 (CH), 129.3 (CH), 140.7 (C),
142.6 (CH); IR (cmꢀ1) 3150 (Ar-H), 2926 (C–H), 1641 (C@C); LRMS (EI+): 202
[M+Å, 36%], 104 (30), 91 (100), 69 (62); HRMS: 202.1720, C15H22 requires M+Å
202.1722.
brevity, simplicity and relatively low temperature of this one-pot
procedure should mean that it competes effectively with the pop-
ular Petasis and Tebbe reagents 1 and 2, which must be preformed
prior to use.
Acknowledgements
The University of Glasgow and MSD are thanked for financial
support.
18. Typical procedure: lactone 9l–n (0.5 mmol) was dissolved in dry THF (1.5 mL)
and titanocene dichloride (1 mmol), the Nysted reagent (0.5 mmol, 20 wt % in
THF) and ethyl pivalate (0.5 mmol) were added. The reaction mixture was
irradiated in a DiscoverÒ CEM focussed microwave synthesis system (100 W,
75 °C, 22 min). This gave a black solution which was quenched and worked-up
as before.16 Flash column chromatography (neutral alumina, Brockmann V, Pet.
ether–Et2O) gave the enol ether 10l–n.
References and notes
1. Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611–
3613.
2. Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392–6394.
3. For reviews, see: (a) Hartley, R. C.; Li, J.; Main, C. A.; McKiernan, G. J. Tetrahedron
2007, 63, 4825–4864; (b) Hartley, R. C.; McKiernan, G. J. J. Chem. Soc., Perkin
Trans. 1 2002, 2763–2793.
4. Recent examples include: (a) Hans, S. K.; Camara, F.; Altiti, A.; Martín-
Montalvo, A.; Brautigan, D. L.; Heimark, D.; Larner, J.; Grindrod, S.; Brown, M. L.;
Mootoo, D. R. Bioorg. Med. Chem. 2010, 18, 1103–1110; (b) Gómez, A. M.; Barrio,
A.; Pedregosa, A.; Uriel, C.; Valverde, S.; López, J. C. Eur. J. Org. Chem. 2010,
2910–2920; (c) Woodward, H.; Smith, N.; Gallagher, T. Synlett 2010, 869–872;
(d) Brand, C.; Rauch, G.; Zanoni, M.; Dittrich, B.; Werz, D. B. J. Org. Chem. 2009,
74, 8779–8786; (e) Imagawa, H.; Saijo, H.; Kurisaki, T.; Yamamoto, H.; Kubo,
M.; Fukuyama, Y.; Nishizawa, M. Org. Lett. 2009, 11, 1253–1255; (f) Liang, G.;
Bateman, L. J.; Totah, N. I. Chem. Commun. 2009, 6457–6459; (g) Mak, S. Y. F.;
Chiang, G. C. H.; Davidson, J. E. P.; Davies, J. E.; Ayscough, A.; Pain, G.; Burton, J.
W.; Holmes, A. B. Tetrahedron: Asymmetry 2009, 20, 921–944; (h) Mehta, G.;
Bhat, B. A. Tetrahedron Lett. 2009, 50, 2474–2477; (i) Smith, A. B., III; Bosanac,
T.; Basu, K. J. Am. Chem. Soc. 2009, 131, 2348–2358.
5. Brown-Wensley, K. A.; Buchwald, S. L.; Cannizzo, L.; Clawson, L.; Ho, S.;
Meinhardt, D.; Stille, J. R.; Straus, D.; Grubbs, R. H. Pure Appl. Chem. 1983, 55,
1733–1744.
6. For reviews see: (a) Schrock, R. R. Chem. Rev. 2002, 102, 145–179; (b) Dörwald,
F. Z. Metal Carbenes in Organic Synthesis; Wiley-VCH: Weinheim, 1999.
7. Pine, S. H.; Kim, G.; Lee, V. Org. Synth. 1990, 69, 72–79.
8. Payack, J. F.; Hughes, D. L.; Cai, D.; Cottrell, I. F.; Verhoeven, T. R. Org. Synth.
2002, 79, 19–26.
9. For the large-scale preparation of Petasis reagent 2 see: Payack, J. F.; Huffman,
M. A.; Cai, D. W.; Hughes, D. L.; Collins, P. C.; Johnson, B. K.; Cottrell, I. F.; Tuma,
L. D. Org. Process Res. Dev. 2004, 8, 256–259.
19. The analytical data for enol ether 10n are in agreement with the literature.28
Data for enol ethers 10i–m are as follows. Compound 10i oil; Rf [Al2O3, Et2O–
Pet. ether (1:9)] 0.77; dH (400 MHz, CDCl3) 2.48 (2H, t, J = 7.2 Hz, CH2), 2.86 (2H,
t, J = 7.2 Hz, CH2), 3.93 (1H, d, J = 2.1 Hz, @CHAHB), 3.97 (1H, d, J = 2.1 Hz,
@CHAHB), 4.36 (2H, s, OCH2), 7.10–7.41 (10H, m, ArH); dC (100 MHz, CDCl3)
33.7 (CH2), 36.9 (CH2), 69.2 (CH2), 82.1 (CH2), 125.8 (CH), 125.8 (CH), 127.4
(CH), 127.7 (CH), 128.3 (CH), 128.4 (CH), 137.3 (C), 161.7 (C), 162.4 (C); IR
(cmꢀ1) 3027 (Ar-H), 2924 (C–H), 1654 (C@C), 1495 (Ar); LRMS (CI+): 239
[(M+H)+, 37%], 113 (44), 107 (90); HRMS: 239.1434, C17H19O requires (M+H)+
239.1346. Compound 10j oil; Rf [Al2O3, Et2O–Pet. ether (1:9)] 0.87; dH
(400 MHz, CDCl3) 0.89 (3H, t, J = 7.0 Hz, CH3), 1.20–1.38 (8H, m, 4 ꢁ CH2),
1.50–1.52 (2H, m, CH2), 1.79 (2H, quint., J = 6.5 Hz, OCH2CH2), 3.82 (3H, s,
OMe), 3.84 (2H, t, J = 6.4 Hz, OCH2), 4.18 (1H, d, J = 2.5 Hz, @CHAHB), 4.62 (1H, d,
J = 2.5 Hz, @CHAHB), 6.85 (1H, dt, J = 7.0, 2.4 Hz, 4-H or 6-H), 7.17–7.33 (3H, m,
ArH); dC (100 MHz, CDCl3) 14.1 (CH3), 22.3 (CH2), 26.3 (CH2), 29.1 (CH2), 29.3
(CH2), 29.4 (CH2), 31.8 (CH2), 55.2 (CH3), 67.8 (CH2), 82.3 (CH2), 111.1 (CH),
113.8 (CH), 118.0 (CH), 129.1 (CH), 138.2 (C), 159.4 (C), 159.8 (C); IR (cmꢀ1
)
2928 (Ar-H), 1599 (C@C); LRMS (CI+) 263 [(M+H)+, 100%], 151 (53); HRMS:
263.2018, C17H27O2 requires (M+H)+ 263.2011. Compound 10k oil; Rf [Al2O3,
Et2O–Pet. ether (1:9)] 0.83. dH (400 MHz, CDCl3) 0.89 (3H, t, J = 6.7 Hz, CH3),
1.19–1.42 (8H, m, 4 ꢁ CH2), 1.43–1.52 (2H, m, CH2), 1.79 (2H, quint., J = 6.6 Hz,
OCH2CH2), 3.84 (2H, t, J = 6.5 Hz, OCH2), 4.22 (1H, d, J = 2.8 Hz, @CHAHB), 4.63
(1H, d, J = 2.8 Hz, @CHAHB), 7.24–7.29 (2H, m, ArH), 7.50 (1H, dt, J = 6.8, 1.8 Hz,
4-H or 6-H), 7.60 (1H, d, J = 2.0 Hz, 2-H); dC (100 MHz, CDCl3) 14.1 (CH3), 22.7
(CH2), 26.3 (CH2), 29.0 (CH2), 29.3 (CH2), 29.7 (CH2), 31.8 (CH2), 68.0 (CH2), 83.0
(CH2), 123.5 (CH), 126.3 (CH), 129.3 (CH), 129.4 (CH), 134.1 (C), 138.6 (C), 157.7
(C); IR (cmꢀ1) 2925 (Ar-H) 1564 (C@C), 786 (C–Cl); LRMS (EI+): 268 [M+Å
40%], 266 [M+Å 35Cl), 81], 188 (27), 157 (17) 155 (45), 136 (14) 134 (47), 91
(100); HRMS: 266.1465 and 268.1455, C16H23O35Cl requires M+Å 266.1437 and
16H23O37Cl requires M+Å 268.1413. Compound 10l oil; Rf [Al2O3, Et2O–Pet.
(
37Cl),
(
10. Nysted, L. N. U.S. Patent 3865848, 1975; Nysted, L. N. Chem. Abstr. 1975, 83,
10406q.
C
ether (1:9)] 0.53; dH (400 MHz, CDCl3) 2.78 (2H, t, J = 6.3 Hz, 4-CH2), 3.64 (1H,
d, J = 1.8 Hz, @CHAHB), 4.00 (2H, t, J = 6.3 Hz, OCH2), 4.55 (1H, d, J = 1.8 Hz,
@CHAHB), 7.25–7.32 (10H, m, ArH); dC (100 MHz, CDCl3) 40.0 (CH2), 58.9 (C),
67.2 (CH2), 84.7 (CH2), 126.7 (CH), 128.2 (CH), 128.5 (CH), 143.6 (C), 167.4 (C);
IR (cmꢀ1) 3058 (Ar-H), 1666 (Ar), 1491 (C@C); LRMS (FAB+): 237 [(M+H)+, 20%],
221 (20), 207 (20), 147 (20), 84 (100); HRMS: 237.1264, C17H17O requires
(M+H)+ 237.1279. Compound 10m amorphous solid; Rf [Al2O3, Et2O–Pet. ether
(1:19)] 0.67; dH (400 MHz, CDCl3) 0.83 (3H, s, 60-Me), 0.86 (3H, s, 60-Me), 0.88
11. (a) Matsubara, S.; Mizuno, T.; Otake, Y.; Kobata, M.; Utimoto, K.; Takai, K.
Synlett 1998, 1369–1371; (b) Watson, A. T.; Park, K.; Wiemer, D. F.; Scott, W. J. J.
Org. Chem. 1995, 60, 5102–5106; (c) Tochtermann, W.; Bruhn, S.; Meints, M.;
Wolff, C.; Peters, E.-M.; Peters, K.; von Schnering, H. G. Tetrahedron 1995, 51,
1623–1630; (d) Collins, P. W.; Shone, R. L.; Perkins, W. E.; Gasiecki, A. F.; Kalish,
V. J.; Kramer, S. W.; Bianchi, R. G. J. Med. Chem. 1992, 35, 694–704.
12. Matsubara, S.; Sugihara, M.; Utimoto, K. Synlett 1998, 313–315.
13. Recent examples with TiCl4 include: (a) Cren, S.; Schar, P.; Renaud, P.; Schenk,
K. J. Org. Chem. 2009, 74, 2942–2946; (b) Huang, H.; Greenberg, M. M. J. Org.
Chem. 2008, 73, 2695–2703; (c) Le, D.-R.; Zhang, D.-H.; Sun, C.-Y.; Zhang, J.-W.;
Yang, L.; Chen, J.; Liu, B.; Su, C.; Zhou, W.-S.; Lin, G.-Q. Chem. Eur. J. 2006, 12,
1185–1204; (d) Hanessian, S.; Mainetti, E.; Lecomte, F. Org. Lett. 2006, 8, 4047–
4050.
(3H, s, 9a0-Me), 1.00 (1H, dd, 5a0-H, J = 12.5, 2.7 Hz), 1.05 (1H, dd, 70-Hax
,
J = 13.3, 2.5 Hz), 1.10–1.48 (5H, m, 40-CHAHB, 50-CHAHB, 70-Heq, 80-CHAHB, 90-
CHAHB), 1.19 (3H, s, 3b0-Me), 1.52-1.73 (3H, m, 50-CHAHB, 80-CHAHB, 90-CHAHB),
1.81 (1H, dq, 40-CHAHB, J = 13.9, 3.8 Hz), 2.00 (1H, dt, 9b-H, J = 11.7, 3.3 Hz),
2.28–2.43 (2H, m, 1-H), 3.89 (1H, s, @CH2), 4.22 (1H, s, @CH2); dC (100 MHz,
CDCl3) 15.2 (CH3), 18.3 (CH2), 20.8 (CH2), 21.0 (CH3), 21.5 (CH3), 27.5 (CH2),
33.0 (CH), 33.4 (C), 36.2 (C), 39.1 (CH2), 39.7 (CH2), 42.3 (CH2), 55.9 (CH3), 59.8
(CH), 81.3 (CH2), 84.4 (C), 161.9 (C); IR (cmꢀ1) 2927 (C–H), 1706 (C@C), 1671
(C@C); LRMS (EI+) 248 [(M)+ 21%], 196 (32), 177 (30), 84 (100);
14. Recent examples with BF3 include: Werle, S.; Fey, T.; Neudoerfl, J. M.; Schmalz,
H.-G. Org. Lett. 2007, 9, 3555–3558.
15. Eisch, J. J.; Piotrowski, A. Tetrahedron Lett. 1983, 24, 2043–2046.
16. Typical procedure: titanocene dichloride (2 mmol) was suspended in dry THF
(5 mL) under argon and the Nysted reagent added (1 mmol, 20 wt % in THF).
This was heated to 40 °C for 30 min until a very dark red solution formed and
was then cooled to the appropriate temperature for reaction (rt or ꢀ78 °C). A
solution of the aldehyde or ketone 9a–h (2 mmol) in dry THF (3 mL) was then
added. The mixture was stirred until no starting material remained (see Fig. 1
for reaction time) and then quenched by pouring into satd aq NaHCO3 (50 mL),
and extracted with Et2O (3 ꢁ 50 mL). The organic extracts were combined then
washed with brine (100 mL), dried (Na2SO4) and concentrated under reduced
pressure. Flash column chromatography (SiO2, Pet. ether–Et2O) afforded the
alkene 10a–h.
HRMS: 248.2138, C17H28O requires, 248.2140; ½a D25
ꢂ
+32.1 (c 0.8, CHCl3); mp
72–74 °C.
20. (a) Adriaenssens, L. V.; Hartley, R. C. J. Org. Chem. 2007, 72, 10287–10290; (b)
Cook, M. J.; Fleming, D. W.; Gallagher, T. Tetrahedron Lett. 2005, 46, 297–300;
(c) Gaunt, M. J.; Jessiman, A. S.; Orsini, P.; Tanner, H. R.; Hook, D. F.; Ley, S. V.
Org. Lett. 2003, 5, 4819–4822.
21. Smith, A. B.; Razler, T. M.; Ciavarri, J. P.; Hirose, T.; Ishikawa, T. Org. Lett. 2005,
7, 4399–4402.
22. Zhao, L.; Kwong, C. K.; Shi, M.; Toy, P. H. Tetrahedron 2005, 61, 12026–
12032.
23. Gupton, J. T.; Layman, W. J. J. Org. Chem. 1987, 52, 3683–3686.
24. Nader, B. S.; Cordova, J. A.; Reese, K. E.; Powell, C. L. J. Org. Chem. 1994, 59,
2898–2901.
25. Alcaide, B.; Almendros, P.; Aragoncillo, C.; Salgado, N. R. J. Org. Chem. 1999, 64,
9596–9604.
26. Alberti, M. N.; Orfanopoulos, M. Org. Lett. 2008, 10, 2465–2468.
27. Aissa, C. J. Org. Chem. 2006, 71, 360–363.
28. Yang, W.; Yang, Y.; Gu, Y.; Wang, S.; Chang, C.; Lin, C. J. Org. Chem. 2002, 67,
3773–3782.
17. The analytical data are in agreement with the literature for alkenes 10a,22 b,23
d,24 e,25 f,26 and h.27 Alkene 10c was isolated as yellow needles: Rf [SiO2, Et2O–
Pet. ether (1:1)] 0.48. dH (400 MHz, CDCl3) 5.45 (1H, d, J = 10.9 Hz, @CHAHB),
5.65 (1H, d, J = 17.2 Hz, @CHAHB), 6.15 (2H, s, CH2O2), 7.02 (1H, s, 4-H), 7.23
(1H, dd, J = 17.2, 10.9 Hz, ArCH@), 7.52 (1H, s, 7-H); dC (100 MHz, CDCl3) 102.6
(CH2), 104.9 (CH), 106.8 (CH), 117.5 (CH2), 130.4 (C), 132.8 (CH), 141.5 (C),
147.1 (C), 151.5 (C); IR (cmꢀ1) 3090 (Ar-H), 2925 (Ar-H), 1602 (C@C), 1499
(NO2), 1329 (NO2); LRMS (CI+) 194 [(M+H)+, 100%], 164 (17); HRMS: 194.0457,
C9H8NO4 requires (M+H)+ 194.0453; mp 59–63 °C. Compound 10g was isolated