1374
C. Kim et al. / Organic Electronics 11 (2010) 1363–1375
[4] (a) J.G. Laquindanum, H.E. Katz, A.J. Lovinger, J. Am. Chem. Soc. 120
(1998) 664;
morphology and microstructure. These results provide
new information about the structural characteristics of
PEN and ADT-based semiconductors and the attractions
of using these cores and substitutents for designing more
solution-processable OTFT materials. A further complete
and detailed device fabrication via other solution-process-
ing methods is underway [22].
(b) M.M. Payne, S.A. Odom, S.R. Parkin, J.E. Anthony, Org. Lett. 6
(2004) 3325;
(c) O.D. Jurchescu, S. Subramanian, R.J. Kline, S.D. Hudson, J.E.
Anthony, T.N. Jackson, D.J. Gundlach, Chem. Mater. 20 (2008) 6733;
(d) M.-C. Chen, C. Kim, S.-Y. Chen, Y.-J. Chiang, M.-C. Chung, A.
Facchetti, T.J. Marks, J. Mater. Chem. 18 (2008) 1029.
[5] (a) C.E. Mauldin, K. Puntambekar, A.R. Murphy, F. Liao, V.
Subramanian, J.M.J. Frechet, D.M. Delongchamp, D.A. Fischer, M.F.
Toney, Chem. Mater. 21 (2009) 1927;
Acknowledgements
(b) K. Takimiya, Y. Kunugi, Y. Konda, H. Ebata, Y. Toyoshima, T.
Otsubo, J. Am. Chem. Soc. 128 (2006) 3044;
(c) Y.M. Sun, Y.Q. Ma, Y.Q. Liu, Y.Y. Lin, Z.Y. Wang, Y. Wang, C.A. Di, K.
Xiao, X.M. Chen, W.F. Qiu, B. Zhang, G. Yu, W.P. Hu, D. Zhu, Adv.
Funct. Mater. 16 (2006) 426;
(d) K. Xiao, Y. Liu, T. Qi, W. Zhang, F. Wang, J. Gao, W. Qiu, Y. Ma, G.
Cui, S. Chen, X. Zhan, G. Yu, J. Qin, W. Hu, D. Zhu, J. Am. Chem. Soc.
127 (2005) 13281;
(e) X. Zhang, A.P. Cote, A.J. Matzger, J. Am. Chem. Soc. 127 (2005)
10502;
(f) S. Ando, J. Nishida, H. Tada, Y. Inoue, S. Tokito, Y. Yamashita, J. Am.
Chem. Soc. 127 (2005) 5336.
We thank the National Science Council, Taiwan, Repub-
lic of China (Grant Numbers NSC98-2628-M-008-003,
NSC97-2113-M-008-003, and NSC98-2627-E-006-003)
and Industrial Technology Research Institute of Taiwan
for support. Research at Northwestern was supported by
AFOSR (FA9550-08-1-0331) and by the NSF-MRSEC pro-
gram through the Northwestern Materials Research Center
(DMR-0520513).
[6] (a) G.S. Tulevski, Q. Miao, A. Afzali, T.O. Graham, C.R. Kagan, C.
Nuckolls, J. Am. Chem. Soc. 128 (2006) 1788;
(b) K.P. Weidkamp, A. Afzali, R.M. Tromp, R.J. Hamers, J. Am. Chem.
Soc. 126 (2004) 12740.
Appendix A. Supplementary material
[7] (a) J.E. Anthony, J.S. Brooks, D.L. Eaton, S.R. Parkin, J. Am. Chem. Soc.
123 (2001) 9482;
Supplementary data associated with this article can be
(b) C.D. Sheraw, T.N. Jackson, D.L. Eaton, J.E. Anthony, Adv. Mater. 15
(2003) 2009;
(c) C.P. Benard, Z. Geng, M.A. Heuft, K. VanCrey, A.G. Fallis, J. Org.
Chem. 72 (2007) 7229;
(d) D. Lehnherr, R. McDonald, R.R. Tykwinski, Org. Lett. 10 (2008)
4163.
References
[8] (a) Pentacene precursors are soluble derivatives, however, the
intrinsic unstability of pentacene remains. M.A. Wolak, B.B. Jang,
L.C. Palilis, Z.H. Kafafi, J. Phys. Chem. B 108 (2004) 5492;
(b) A. Maliakal, K. Raghavachari, H. Katz, E. Chandross, T. Siegrist,
Chem. Mater. 16 (2004) 4980;
[1] (a) For recent reviews on this topic, see: A.C. Arias, J.D. MacKenzie, I.
McCulloch, J. Rivnay, A. Salleo, Chem. Rev. 110 (2010) 3;
(b) C.-A. Di, Y. Liu, Y. Yungi, Z. Gui, D. Zhu, Acc. Chem. Res. 42 (2009)
1573;
(c) M. Chabinyc, Y.-L. Loo, J. Macrom. Sci. Polym. Rev. 46 (2006) 1;
(d) A. Dodabalapur, Nature 434 (2005) 151;
(c) H. Yamada, Y. Yamashita, M. Kikuchi, H. Watanabe, T. Okujima,
H. Uno, T. Ogawa, K. Ohara, N. Ono, Chem. Eur. J. 11 (2005) 6212;
(d) P. Coppo, S.G. Yeates, Adv. Mater. 17 (2005) 3001;
(e) A.R. Reddy, M. Bendikov, Chem. Commun. (2006) 1179.
[9] (a) M.M. Payne, S.R. Parkin, J.E. Anthony, C.-C. Kuo, T.N. Jackson, J.
Am. Chem. Soc. 127 (2005) 4986;
(e) H. Sirringhaus, Adv. Mater. 17 (2005) 2411;
(f) A. Facchetti, M.-H. Yoon, T.J. Marks, Adv. Mater. 17 (2005) 1705.
[2] (a) For recent studies, see: X. Gao, C. Di, Y. Hu, X. Yang, H. Fan, F.
Zhang, Y. Liu, H. Li, D. Zhu, J. Am. Chem. Soc. 132 (2010). ASAP;
(b) C. Kim, J.R. Quinn, A. Facchetti, T.J. Marks, Adv. Mater. 22 (2010)
342;
(b) S. Subramanian, S.K. Park, S.R. Parkin, V. Podzorov, T.N. Jackson,
J.E. Anthony, J. Am. Chem. Soc. 130 (2008) 2706.
(c) C. Kim, M.-C. Chen, Y.-J. Chiang, Y.-J. Guo, J. Youn, H. Huang, Y.-J.
Liang, Y.-J. Lin, Y.-W. Huang, T.-S. Hu, G.-H. Lee, A. Facchetti, T.J.
Marks, Org. Electron. (2010) 801;
[10] R. Schmidt, S. Göttling, D. Leusser, D. Stalke, A. Krause, F. Würthner, J.
Mater. Chem. 16 (2006) 3708.
[11] J.E. Anthony, Chem. Rev. 106 (2006) 5028.
(d) R. Hamilton, M. Heeney, T. Anthopoulos, I. McCulloch, Org.
Electron. (2010) 393;
(e) H. Yan, Z. Chen, Y. Zheng, C.E. Newman, J.R. Quinn, F. Dolz, M.
Kastler, A. Facchetti, Nature 457 (2009) 679;
(f) X. Cheng, Y.-Y. Noh, J. Wang, M. Tello, J. Frisch, R.-P. Blum, A.
Vollmer, J.P. Rabe, N. Koch, H. Sirringhaus, Adv. Funct. Mater. 19
(2009) 2407;
(g) C. Reese, M.E. Roberts, S.R. Parkin, Z. Bao, Adv. Mater. 21 (2009)
3678;
(h) G.R. Llorente, M.-B. Dufourg-Madec, D.J. Crouch, R.G. Pritchard, S.
Ogier, S.G. Yeates, Chem. Commun. (2009) 3059;
(i) M.-C. Chen, Y.-J. Chiang, C. Kim, Y.-J. Guo, S.-Y. Chen, Y.-J. Liang,
Y.-W. Huang, T.-S. Hu, G.-H. Lee, A. Facchetti, T.J. Marks, Chem.
Commun. (2009) 1846.
[12] D.R. Maulding, B.G. Roberts, J. Org. Chem. 34 (1969) 1734.
[13] Although this 4-triethylsilylphenyl acetylene has been reported in
the literature (see ref below) this ligand can be obtained via the
Sonogashira coupling in a simple procedure with good yield. C.
Eaborn, A.R. Thompson, D.R.M. Walton, J. Chem. Soc. C. Org. 15
(1967) 1364.
[14] S.M. Sze, Physics of Semiconductor Devices, second ed., John Wiley &
Sons, USA, 1981.
[15] Since the concentration of the solution has a strong influence on the
rate of decomposition, a very dilute solution (ꢀ4.0 ꢂ 10ꢁ5 M) was
used.
[16] Alkynyl substitution lowers the LUMO energy for pentacene
derivatives as compared to that of pentacene, which has been
known to hinder photooxidation. M. Akhtaruzzaman, N. Kamata, J.
Nishida, S. Ando, H. Tada, M. Tomura, Y. Yamashita, Chem. Commun.
(2005) 3183. and Ref. [3a].
[3] (a) S.K. Park, D.A. Mourey, J.-I. Han, J.E. Anthony, T.N. Jackson, Org.
Electron. 10 (2009) 486;
(b) T.W. Kelly, P.F. Baude, C. Gerlach, D.E. Ender, D. Muyres, M.A.
Hasse, D.E. Vogel, S.D. Theiss, Chem. Mater. 16 (2004) 4413;
(c) M.M. Payne, S.R. Parkin, J.E. Anthony, J. Am. Chem. Soc. 127
(2005) 4986;
(d) C.R. Swartz, S.R. Parkin, J.E. Bullock, J.E. Anthony, A.C. Mayer, G.G.
Malliaras, Org. Lett. 7 (2005) 3163;
(e) D.J. Gundlach, Y.Y. Lin, T.N. Jackson, S.F. Nelson, Appl. Phys. Lett.
80 (2002) 2925;
(f) H. Meng, M. Bendikov, G. Mitchell, R. Helgeson, F. Wudl, Z. Bao, T.
Siegrist, C. Kloc, C.H. Chen, Adv. Mater. 15 (2003) 1090;
(g) Y. Li, Y. Wu, P. Liu, Z. Prostran, S. Gardner, B.S. Ong, Chem. Mater.
19 (2007) 418.
[17] Because Pen is not sufficiently soluble, the DPV was performed at
high temperature. There was no indication of thermal
decomposition under this condition (under N2).
[18] Measured with a Pt working electrode in an o-dichlorobenzene
solution using 0.1 mol dmꢁ3 Bu4NPF6 as the supporting electrolyte.
N. Jun-ichi Nishida, D. Kumaki, S. Tokito, Y. Yamashita, J. Am. Chem.
Soc. 128 (2006) 9598.
[19] Similar trends were reported in: J. Wang, K. Liu, Y.-Y. Liu, C.-L. Song,
Z.-F. Shi, J.-B. Peng, H.-L. Zhang, X.-P. Cao, Org. Lett. 11 (2009)
2563.
[20] The planar angle (ꢀ8.1°) and interweaving angle (82°) were smaller
for BBPE-Pen with an interplanar core distance of 3.44 Å. In