4276
K.R. Prasad, K. Penchalaiah / Tetrahedron 67 (2011) 4268e4276
108.8 (Cq), 108.4 (Cq, minor), 84.4 (CH), 82.1 (CH, minor), 80.4 (CH),
79. 8 (CH), 79.4 (CH, minor), 76.0 (CH, minor), 73.3 (CH), 72.7 (CH2,
minor), 72.5 (CH2), 35.3 (CH2, minor), 34.3 (CH2), 31.7 (CH2), 31.6
(CH2, minor), 31.0 (CH2, minor), 30.9 (CH2), 30.6 (CH2, minor), 30.0
(CH2), 29.4 (CH2), 29.1 (CH2, minor), 27.1 (CH3), 27.0 (CH3, minor),
26.9 (CH3), 25.6 (CH2), 25.3 (CH2), 24.5 (CH2, minor), 22.6 (CH2),14.1
(CH3); HRMS MþþNa found 453.2620; C20H29NO5þNa requires
453.2617.
1.77 (br ddd, 1H, H-3), 1.76e1.72 (m, 1H, H-3, minor), 1.45e1.38
(br m, 2H, H-11), 1.45e1.38 (br m, 2H, H-11, minor), 1.36e1.20 (br
envelope, 8H, H-12, 13, 14, 15), 1.36e1.20 (br envelope, 8H, H-12, 13,
14, 15, minor), 0.88 (t, J¼6.8 Hz, 3H, H-16); 13C NMR (100 MHz,
CDCl3) 176.3 (Cq-1), 173.5 (Cq-1, minor), 134.5 (CH-6), 133.7 (CH-6,
minor), 129.9 (CH-7, minor), 126.6 (CH-7), 79.6 (CH-9), 79.5 (CH-5,
minor), 76.9 (CH-4, minor), 76.4 (CH-9, minor), 73.7 (CH-10, minor),
73.3 (CH-4), 72.8 (CH-10), 72.4 (CH-5), 36.6 (CH2-8), 35.9 (CH2-2,
minor), 34.1 (CH2-11), 33.8 (CH2-11, minor), 32.5 (CH2-14), 32.2
(CH2-14, minor), 32.1 (CH2-8, minor), 29.9 (CH2-13), 29.0 (CH2-2),
26.4 (CH2-3), 26.1 (CH2-12), 23.3 (CH2-15), 14.3 (CH3-16); HRMS
MþþNa found 323.1835; C20H29NO5þNa requires 323.1834.
4.6. (3aS,8R,11aS,Z)-8-((R)-1-(Benzyloxy)heptyl)-2,2-dimethyl-
4,5,8,9-tetrahydro-3aH-[1,3]dioxolo[4,5-e]oxecin-6(11aH)-one
(23a)
Z-Lactone 23a (0.019 g) 26% yield. Rf 0.3 (petroleum ether/EtOAc
Acknowledgements
7:3); [
a
]
24 ꢀ3.1 (c 1.6, CHCl3); lit.3l
[
a]
24 þ4.5 (c 1.6, CHCl3) for the
D
D
enantiomer; IR (neat) 2930, 2860, 1734, 1241, 1056, 749 cmꢀ1
;
1H
We thank Department of Science and Technology (DST), New
Delhi for funding of the project. K.R.P. is a swarnajayanthi fellow of
DST. KP thanks CSIR for senior research fellowship.
NMR (400 MHz, CDCl3)
d
7.41e7.21 (m, 5H), 5.73 (dt, J¼10.2, 6.6, Hz,
1H), 5.49 (t, J¼10.2 Hz, 1H), 5.09 (dt, J¼11.9, 1.8 Hz, 1H), 4.64, 4.57
(ABq, J¼11.6 Hz, 2H), 4.64e4.43 (m, 1H), 3.65 (t, J¼8.5 Hz, 1H), 3.48
(dt, J¼8.9, 4.7 Hz, 1H), 2.77e2.54 (m, 2H), 2.42e1.95 (m,4H),
1.58e1.37 (m, 3H), 1.42 (s, 3H), 1.39 (s, 3H), 1.36e1.22 (br m, 7H),
0.88 (t, J¼6.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) 170.8 (Cq), 138.3
(Cq), 130.8 (CH), 130.4 (CH), 128.4 (CH), 127.7 (2ꢂCH), 107.6 (Cq),
81.5 (CH), 79.6 (CH), 77.0 (CH), 72.8 (CH), 72.6 (CH2), 32.1 (CH2), 31.7
(CH2), 30.5 (CH2), 29.4 (CH2), 29.1 (CH2), 28.2 (CH2), 27.0 (CH3), 26.9
(CH3), 25.4 (CH2), 22.6 (CH2), 14.1 (CH3); HRMS MþþNa found
453.2610; C20H29NO5þNa requires 453.2617.
References and notes
1. Ratnayake, A. S.; Yoshida, W. Y.; Mooberry, S. L.; Hemscheidt, T. Org. Lett. 2001,
3, 3479.
2. For a concise review on earlier efforts on the synthesis of microcarplaide see:
Ishigami, K. Biosci. Biotechnol. Biochem. 2009, 73, 971.
3. Total synthesis of microcarplaide: (a) Murga, J.; Flomir, E.; García-Fortanet, J.;
Carda, M.; Marco, J. A. Org. Lett. 2002, 4, 3447; (b) Gurjar, M. K.; Nagaprasad, R.;
Ramana, C. V. Tetrahedron Lett. 2003, 44, 2873; (c) Banwell, M. G.; Loong, D. T. J.
Heterocycles 2004, 62, 713; (d) Ishigami, K.; Kitahara, T. Heterocycles 2004, 63,
785; (e) Kumar, P.; Naidu, S. V. J. Org. Chem. 2005, 70, 4207; (f) Ishigami, K.;
Watanabe, H.; Kitahara, T. Tetrahedron 2005, 61, 7546; (g) Davoli, P.; Fava, F.;
Morandi, S.; Spaggiari, A.; Prati, F. Tetrahedron 2005, 61, 4427; (h) Ghosh, S.;
Rao, B. V.; Shashidhar, J. Tetrahedron Lett. 2005, 46, 5479; (i) Chavan, S. P.;
Cherukupally, P. Tetrahedron Lett. 2005, 46, 1939; (j) Gurjar, M. K.; Nagaprasad,
R.; Ramana, C. V.; Karmakar, S.; Mohapatra, D. K. Arkivoc 2005, 235; (k) Marco,
J. A.; Fortanet, J. G.; Murga, J.; Falomir, E.; Carda, M. J. Org. Chem. 2005, 70, 9822;
(l) Cherukupalli, G. R.; Sharma, G. V. M. Tetrahedron: Asymmetry 2006, 17, 1081;
4.7. Microcarpalide (D)-1
To a pre-cooled (0 ꢁC) solution of 23 (0.037 g, 0.086 mmol) in
CH2Cl2 (1 mL) was added TiCl4 (0.28 mL, 0.25 mmol, 0.9 M solution
in CH2Cl2). Reaction mixture was stirred at same temperature for
2 h. After the reaction is complete (TLC), cold water (1 mL) was
added and it was filtered through a short pad of Celite and Celite
pad was washed with ethylacetate (5 mL). Filtrate was washed with
satd NaHCO3 (5 mL) and the aqueous layer was extracted with
EtOAc (2ꢂ5 mL). Combined EtOAc layer was washed with brine
(5 mL) and dried over Na2SO4. Evaporation of the solvent followed
by purification of the resulting residue by column chromatography
furnished (þ)-1 (0.016 g) in 62% yield as a colorless oil. Rf 0.5 EtOAc;
€
€
€
(m) Furstner, A.; Nagano, T.; Muller, C.; Seidel, G.; Muller, O. Chem.dEur. J. 2007,
13, 1452.
4. Prasad, K. R.; Penchalaiah, K.; Choudhary, A.; Anbarasan, P. Tetrahedron Lett.
2007, 48, 309.
5. For synthesis of 9 see: Prasad, K. R.; Anbarasan, P. Tetrahedron: Asymmetry 2006,
17, 850; For a general approach to the synthesis of
acid see: Prasad, K. R.; Chandrakumar, A. Tetrahedron 2007, 63, 1798 For recent
application of -keto amides derived from tartaric acid in natural product
g-keto amides from tartaric
g
synthesis see: (a) Prasad, K. R.; Pawar, A. B. Synlett 2010, 1093; (b) Prasad, K. R.;
Pawar, A. B. ARKIVOC 2010, 39; (c) Prasad, K. R.; Gandi, V. R.; Nidhiry, J. E.; Bhat,
K. S. Synthesis 2010, 2521; (d) Prasad, K. R.; Gandi, V. R. Synlett 2009, 2593; (e)
Prasad, K. R.; Gholap, S. L. J. Org. Chem. 2008, 73, 2; (f) Prasad, K. R.; Gholap, S. L.
J. Org. Chem. 2008, 73, 2916; (g) Prasad, K. R.; Swain, B. Tetrahedron: Asymmetry
2008, 19, 1134; (h) Prasad, K. R.; Chandrakumar, A. J. Org. Chem. 2007, 72, 6312;
(i) Prasad, K. R.; Gholap, S. L. J. Org. Chem. 2006, 71, 3643.
6. For application of this strategy in the synthesis of allylic alcohols, see: (a)
Schneider, C.; Kazmaier, U. Synthesis 1998, 1314; (b) Ramarao, A. V.; Reddy, E. R.;
Joshi, B. V.; Yadav, J. S. Tetrahedron Lett. 1987, 28, 6497.
[
a
]
24þ26.3 (c 0.65, MeOH); lit.3l
[
a]
24ꢀ22.0 (c 0.67, MeOH) for en-
antDiomer; lit.3m
[a
]
2D4ꢀ27.28 (c 0.83,DMeOH) for the enantiomer; IR
(neat) 3417, 2928, 2857, 1713, 1436, 1224, 1156, 1064, 757 cmꢀ1; 1H
NMR (400 MHz, CDCl3; mixture of conformers)
d
5.70 (dd, J¼15.8,
2.1 Hz, 1H, H-6), 5.72e5.60 (m, 1H, H-7, minor), 5.50 (dddd, J¼15.5,
10.0, 5.1, 1.9 Hz, 1H, H-7), 5.06 (dd, J¼15.5, 9.2 Hz, 1H, H-6, minor),
4.82 (dt, J¼11.3, 4.5 Hz, 1H, H-9), 4.61 (ddd, J¼8.0, 4.3, 2.6 Hz, 1H, H-
9, minor), 4.11 (br m, 1H, H-5), 3.78 (br m, 1H, H-4), 3.64e3.57 (m,
1H, H-5, minor), 3.55 (br m, 1H, H-10), 3.37e3.28 (m, 1H, H-4,
minor), 3.13 (d, J¼3.8 Hz, 1H, 4-OH), 2.90 (d, J¼6.5 Hz, 1H,
5-OH, minor), 2.87 (d, J¼5.3 Hz, 2H, 5, 10-OH), 2.57e2.50 (br m, 2H,
H-2, minor), 2.52e2.42 (br m, 1H, H-2), 2.32e2.24 (br m, 1H, H-8),
2.32e2.24 (br m, 1H, H-8, minor), 2.20e2.05 (br m, 3H, H-2, 3, 8),
2.20e2.05 (br m, 1H, H-2, minor), 2.01e1.93 (br m, 1H, H-3, minor),
7. Al-Hakim, A. H.; Haines, A. H.; Morley, C. Synthesis 1985, 207.
8. Prasad, K. R.; Penchalaiah, K. Tetrahedron: Asymmetry 2010, 21, 2853.
9. Takahashi, S.; Ogawa, N.; Koshino, H.; Nakata, T. Org. Lett. 2005, 7, 2783.
10. It was shown by Cherukupalli and Sharma3l and by Furstner et.al.3m that esters
structurally similar to 24 yielded undesired (Z)-lactone in metathesis reaction
with Grubbs’ second generation catalyst. Hence ring closing metathesis
reaction of 24 was not investigated with other metathesis catalysts.
11. Shing, T. K. M.; Wong, W. F.; Ikeno, T.; Yamada, T. Chem.dEur. J. 2009, 15, 2693.
12. Batty, D.; Crich, D. J. Chem. Soc., Perkin Trans. 1 1992, 3193.