with increased temperature have been reported for both
(a-diimine)nickel(II) complexes28 and Ni(II) catalysts with
chelating P,O ligands.29
1 E. Drent, R. van Dijk, R. van Ginkel, B. van Oort and R. I. Pugh,
Chem. Commun., 2002, 744–745.
2 S. Liu, S. Borkar, D. Newsham, H. Yennawar and A. Sen,
Organometallics, 2007, 26, 210–216.
The polymerization activity of 3b in the absence of a PPh3
scavenger is remarkable, compared to other [PO]NiPh(PPh3)
systems17,21 or SHOP-type Ni(II) catalysts,30 which show much
lower activities without a scavenger (o4000 TO hꢀ1). It
appears that the bulky ligand 1b promotes dissociation of
the Lewis base.
3 T. Kochi, S. Noda, K. Yoshimura and K. Nozaki, J. Am. Chem.
Soc., 2007, 129, 8948–8949.
4 S. Luo, J. Vela, G. R. Lief and R. F. Jordan, J. Am. Chem. Soc.,
2007, 129, 8946–8947.
5 K. M. Skupov, P. R. Marella, M. Simard, G. P. A. Yap, N. Allen,
D. Conner, B. L. Goodall and J. P. Claverie, Macromol. Rapid
Commun., 2007, 28, 2033–2038.
6 J. Vela, G. R. Lief, Z. Shen and R. F. Jordan, Organometallics,
2007, 26, 6624–6635.
7 W. Weng, Z. Shen and R. F. Jordan, J. Am. Chem. Soc., 2007, 129,
15450–15451.
8 S. Borkar, D. K. Newsham and A. Sen, Organometallics, 2008, 27,
3331–3334.
9 K. M. Skupov, L. Piche and J. P. Claverie, Macromolecules, 2008,
41, 2309–2310.
10 S. Ito, K. Munakata, A. Nakamura and K. Nozaki, J. Am. Chem.
Soc., 2009, 131, 14606–14607.
11 A. Berkefeld and S. Mecking, Angew. Chem., Int. Ed., 2008, 47,
2538–2542.
12 B. L. Goodall, Metal Catalysts in Olefin Polymerization,
ed. Z. Guan, Springer Berlin/Heidelberg, 2009, pp. 159–178.
13 A. Nakamura, S. Ito and K. Nozaki, Chem. Rev., 2009, 109,
5215–5244.
14 L. S. Boffa and B. M. Novak, Chem. Rev., 2000, 100, 1479–1494.
15 S. D. Ittel, L. K. Johnson and M. Brookhart, Chem. Rev., 2000,
100, 1169–1204.
16 V. C. Gibson and S. K. Spitzmesser, Chem. Rev., 2003, 103,
283–316.
Nevertheless, addition of one equiv. Ni(COD)2 to 3b
increased the productivity of the catalyst by a factor of two,
without affecting either Mn or the polydispersity index (PDI)
significantly. The latter remains unchanged at ca. 2 (compare
entries 4 and 6), and the high Tm value is consistent with highly
linear PE. The effect of the strong Lewis acid B(C6F5)3 on the
activity of 3b was even more pronounced, but resulted in low
molecular weight polyethylene with a high polydispersity index
(entry 7), suggesting the presence of multiple catalytically active
sites. A small-scale experiment in a NMR tube with 3b and a
stoichiometric amount of B(C6F5)3 revealed the formation
of a complex mixture of species, although the adduct
Ph3P–B(C6F5)3 was not detected.31
In sum, we report a single-component nickel(II) catalyst that
produces linear, high molecular weight polyethylene. Blocking
only one of the transition metal faces is sufficient to inhibit
associative displacement of the growing polymer chain by an
incoming monomer. Also, by analogy to recent work with
dialkyl(biaryl)phosphine ligands in Pd-catalyzed coupling
catalysts where metal–arene interactions are observed,32,33 it
is possible that a weak interaction between Ni and the aryl
17 R. J. Nowack, A. K. Hearley and B. Rieger, Z. Anorg. Allg. Chem.,
2005, 631, 2775–2781.
18 D. Guironnet, T. Runzi, I. Gottker-Schnetmann and S. Mecking,
¨
¨
Chem. Commun., 2008, 4965–4967.
19 D. Guironnet, P. Roesle, T. Runzi, I. Gottker-Schnetmann and
¨
¨
S. Mecking, J. Am. Chem. Soc., 2009, 131, 422–423.
20 D. Zhang, J. Wang and Q. Yue, J. Organomet. Chem., 2010, 695,
903–908.
C
ipso (e.g., C16 in Fig. 2) contributes to the formation of high
molecular weight polyethylene. Most important, this work
points to new opportunities regarding [PO] ligand design.
We are currently exploring the reactivity of these complexes
in the copolymerization of ethylene with polar monomers.
The authors thank Dr Jerry Hu and Dr James Pavlovich
for their assistance with NMR and mass spectrometry, respec-
tively, and Obum Kwon and Prof. G. Bazan for their help with
GPC. This work was supported partially by the National
Science Foundation under Award No. CBET08-54425.
21 X. Zhou, S. Bontemps and R. F. Jordan, Organometallics, 2008,
27, 4821–4824.
22 S. Noda, T. Kochi and K. Nozaki, Organometallics, 2009, 28,
656–658.
23 Z. Shen and R. F. Jordan, J. Am. Chem. Soc., 2010, 132, 52–53.
24 C. R. Smith, A. Zhang, D. J. Mans and T. V. RajanBabu, Org.
Synth., 2008, 85, 248.
P
25
webelements.com.
26 D. H. Camacho and Z. Guan, Chem. Commun., 2010, 46,
7879–7893.
27 20 mmol 2a or 3b dissolve readily in 5 mL toluene at 20 1C.
28 D. P. Gates, S. A. Svejda, E. Onate, C. M. Killian, L. K. Johnson,
P. S. White and M. Brookhart, Macromolecules, 2000, 33,
2320–2334.
Notes and references
z Crystal data for complex 2a + 2C6H6. C49H47NiO7PS, M = 869.6,
29 U. Klabunde and S. D. Ittel, J. Mol. Catal. A: Chem., 1987, 41,
123–134.
ꢀ
triclinic, space group P1, a = 11.165(7), b = 11.531(7), c = 17.445(11) A,
a = 72.330 (9)1, b = 90.065 (10)1, g = 83.002 (10)1, V = 2122(2) A3,
T = 150 K, Z = 2, F(000) = 912, reflections measured: 15 376, unique
reflections: 7172 [R(int) = 0.0414]. The final wR2 was 0.1936. Complex
2b + C6H6. C35H33NiO5PS, M = 655.35, monoclinic, space group
P2(1)/c, a = 12.848(4), b = 11.461(4), c = 22.104(7) A, b =
106.795(5)1, V = 3116.1(17) A3, T = 150 K, Z = 4, F(000) = 1368,
reflections measured: 24 608, unique reflections: 6423 [R(int) = 0.0827].
The final wR2 was 0.1313. CCDC 806742 and 806743.
30 P. Kuhn, D. Se
Trans., 2007, 515–528.
´
meril, D. Matt, M. J. Chetcuti and P. Lutz, Dalton
31 H. Jacobsen, H. Berke, S. Doring, G. Kehr, G. Erker, R. Frohlich
¨
¨
and O. Meyer, Organometallics, 1999, 18, 1724–1735.
32 T. E. Barder, S. D. Walker, J. R. Martinelli and S. L. Buchwald,
J. Am. Chem. Soc., 2005, 127, 4685–4696.
33 D. S. Surry and S. L. Buchwald, Angew. Chem., Int. Ed., 2008, 47,
6338–6361.
c
6950 Chem. Commun., 2011, 47, 6948–6950
This journal is The Royal Society of Chemistry 2011