3344
B.V.S. Reddy et al. / Tetrahedron Letters 52 (2011) 3342–3344
Ma, J. A. Angew. Chem., Int. Ed. 2006, 45, 354; (k) Enders, D.; Huttl, M. R. M.;
Grondal, C.; Raabe, G. Nature 2006, 441, 861; (l) Cabrera, S.; Alemen, J.; Bolze,
P.; Bertelsen, S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2008, 47, 121; (m) Penon,
O.; Carlone, A.; Mazzanti, A.; Locatelli, M.; Sambri, L.; Bartoli, G.; Melchiorre, P.
Chem. Eur. J. 2008, 14, 4788.
and the corresponding product 3a was obtained in 88% yield with
high selectivity (Scheme 1).
The stereochemistry of the product was confirmed by NOE
studies.9 This result provided the incentive for further study of
reactions with various aromatic aldehydes, such as 2-naphthalde-
hyde, p-tolualdehyde, p-chlorobenzaldehyde, p-bromobenzalde-
hyde, p-anisaldehde and p-nitrobenzaldehyde.
3. (a) Snider, B. B. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, U.K., 1991; 2, p 527; (b) Mikami, K.; Shimizu, M. Chem. Rev.
1992, 92, 1021; (c) Mikami, K.; Terada, M.; Narisawa, S.; Nakai, T. Synlett 1992,
255; (d) Snider, B. M. Acc. Chem. Res. 1980, 13, 426; (e) Trost, B. M. Acc. Chem.
Res. 1990, 23, 34; (f) Marshall, J. A.; Andersen, M. W. J. Org. Chem. 1992, 57,
5851; (g) Marshall, J. A.; Andersen, M. W. J. Org. Chem. 1993, 58, 3912; (h)
Braddock, D. C.; Hii, K. K.; Brown, J. M. Angew Chem.,Int. Ed. 1998, 37, 1720; (i)
Yadav, J. S.; Reddy, B. V. S.; Ganesh, A. V.; Kumar, G. G. K. S. N. Tetrahedron Lett.
2010, 51, 2963.
4. (a) Prins, H. J. Chem. Weekbl. 1919, 16, 1072; (b) Adams, D. R.; Bhatnagar, S. P.
Synthesis 1977, 661; (c) Wei, Z. Y.; Li, J. S.; Wang, D.; Chan, T. H. Tetrahedron Lett.
1987, 28, 3441; (d) Perron, F.; Albizati, K. F. J. Org. Chem. 1987, 52, 4130; (e)
Wei, Z. Y.; Wang, D.; Li, J. S.; Chan, T. H. J. Org. Chem. 1989, 54, 5768; (f) Coppi,
L.; Ricci, A.; Taddei, M. J. Org. Chem. 1988, 53, 913; (g) Viswanathan, G. S.; Yang,
J.; Li, C. J. Org. Lett. 1999, 1, 993.
5. (a) Barluenga, J.; Fernandez, A.; Dieguez, A.; Rodriguez, F.; Fananas, F. J. Chem.
Eur. J. 2009, 15, 11660; (b) Chavre, S. N.; Ullapu, P. N.; Min, S.-J.; Lee, J. K.; Pae, A.
N.; Kim, Y.; Cho, Y. S. Org. Lett. 2009, 11, 3834; (c) Ullapu, P. N.; Min, S.-J.;
Chavre, S. N.; Choo, H.; Lee, J. K.; Pae, A. N.; Kim, Y.; Chang, M. H.; Cho, Y. S.
Angew. Chem., Int. Ed. 2009, 48, 2196; (d) Elliott, M. C.; Sayed, N. N. E. E.; Paine, J.
S. Eur. J. Org. Chem. 2007, 792; (e) Epstein, O. L.; Rovis, T. J. Am. Chem. Soc. 2006,
128, 16480; (f) Pham, M.; Allatabakhsh, A.; Minehan, T. G. J. Org. Chem. 2008, 73,
741; (g) Li, H.; Loh, T. P. J. Am. Chem. Soc. 2008, 130, 7194; (h) Zhao, X.-L.; Liu, L.;
Chen, Y.-J.; Wang, D. Tetrahedron 2006, 62, 7113.
6. (a) Crosby, S. R.; Harding, J. R.; King, C. D.; Parker, G. D.; Willis, C. L. Org. Lett.
2002, 4, 3407; (b) Dobbs, A. P.; Martinovic, S. Tetrahedron Lett. 2002, 43, 7055;
(c) Aubele, D. L.; Lee, C. A.; Floreancig, P. E. Org. Lett. 2003, 5, 4521; (d) Liu, F.;
Loh, T.-P. Org. Lett. 2007, 9, 2063; (e) Tadpetch, K.; Rychnovsky, S. D. Org. Lett.
2008, 10, 4839; (f) Miranda, P. O.; Carballo, R. M.; Martın, V. S.; Padron, J. L. Org.
Lett. 2009, 11, 357.
7. (a) Bahnck, K. B.; Rychnovsky, S. D. J. Am. Chem. Soc. 2008, 130, 13177; (b) Woo,
S.; Kwon, M. S.; Lee, E. Angew. Chem., Int. Ed. 2008, 47, 3242; (c) Cossey, K. N.;
Funk, R. L. J. Am. Chem. Soc. 2004, 126, 12216; (d) Chan, K.-P.; Ling, Y. H.; Loh, T.-
P. Chem. Commun. 2007, 939; (e) Wender, P. A.; DeChristopher, B. A.; Schrier, A.
J. J. Am. Chem. Soc. 2008, 130, 6658; (f) Aubele, D. L.; Wan, S.; Floreancig, P. E.
Angew. Chem., Int. Ed. 2005, 44, 3485; (g) Lee, C.-H. A.; Loh, T.-P. Tetrahedron
Lett. 2006, 47, 1641.
8. (a) Yadav, J. S.; Reddy, B. V. S.; Kumar, G. G. K. S. N.; Swamy, T. Tetrahedron Lett.
2007, 48, 2205; (b) Yadav, J. S.; Reddy, B. V. S.; Kumar, G. G. K. S. N.; Reddy, G.
M. Tetrahedron Lett. 2007, 48, 4903; (c) Yadav, J. S.; Reddy, B. V. S.; Maity, T.;
Kumar, G. G. K. S. N. Tetrahedron Lett. 2007, 48, 7155; (d) Yadav, J. S.; Reddy, B.
V. S.; Maity, T.; Kumar, G. G. K. S. N. Tetrahedron Lett. 2007, 48, 8874.
9. Abate, A.; Allievi, M.; Brenna, E.; Fuganti, C.; Gatti, F. G.; Serra, S. Helv. Chim.
Acta 2006, 89, 177.
The aromatic aldehydes underwent smooth coupling with a
homoallyl alcohol generated in situ via an intramolecular ene
reaction of 2 to furnish a variety of aryl substituted furopyranopy-
ran derivatives (Table 1, entries b–g). Like aromatic aldehydes,
pyridin-2-carboxaldehyde also participated well in this reaction
(Table 1, entry h). Furthermore, aliphatic substrates, such as hydro-
cinnamaldehyde, hexanaldehyde, cyclohexanecarboxaldehyde and
isovelaraldehyde also gave the desired products in good yields (Ta-
ble 1, entries i–l). Notably, acid sensitive trans-cinnamaldehyde
also participated effectively in this cyclization (Table 1, entry m).
In the absence of a catalyst, no reaction was observed under similar
conditions. As solvent, dichloromethane was found to give the best
results. All the products were characterized and confirmed by
NMR, IR, and mass spectrometry. Probably, the reaction proceeds
via an intramolecular ene reaction of O-prenyl derivative of a sugar
aldehyde to generate a homoallyl alcohol. Thus in situ formed
homoallylic alcohol may undergo Prins cyclization with an alde-
hyde to afford the desired product (Scheme 2).
The scope and generality of this process is illustrated with re-
spect to various aldehydes and the results are presented in Table
1.10 Eventually, we attempted the coupling of p-bromobezalde-
hyde with cyclohexylidene protected O-prenyl tethered sugar alde-
hyde. The reaction was also successful with cyclohexylidene
protected sugar derivative to furnish the corresponding cyclized
product 5 in 87% yield under similar conditions (Scheme 3).
In summary, we have demonstrated a novel approach for the
synthesis of sugar annulated pyranopyran derivatives via a tandem
ene-Prins cyclization using a catalytic amount of Sc(OTf)3. In situ
generated homoallyl alcohol, by means of intramolecular ene cycli-
zation of O-prenyl derivative of a sugar aldehyde was successfully
coupled with various aldehydes to produce a novel class of sugar
fused pyranopyran derivatives.
10. General procedure: To
a solution of O-prenyl tethered sugar aldehyde
(5.0 mmol), in dichloromethane (10 mL) was added scandium triflate
(0.5 mmol) at rt. After completion of the ene reaction (1.5 h) as indicated by
TLC, aldehyde (5.0 mmol) in dichloromethane (6 mL) was added to the reaction
mixture at the same temperature. The reaction mixture was stirred at room
temperature for a specified amount of time (Table 1). After completion of the
reaction as indicated by TLC, the reaction mixture was extracted with
dichloromethane (2 ꢀ 10 mL). The combined organic layers were dried over
anhydrous Na2SO4. Removal of the solvent followed by purification on silica gel
(Merck, 60–120 mesh, ethyl acetate–hexane, 1.0–9.0) gave the pure products.
Acknowledgments
AVG thanks the CSIR, New Delhi for the award of a fellowship.
Supplementary data
3a: ½a 2D5
ꢁ
+47.6 (C 1.00, CHCl3); IR (KBr): mmax 3066, 2932, 2858, 1636, 1608,
1542, 1329, 1290, 1164, 1089, 964, 821, 738 cmꢂ1
.
1H NMR (500 MHz, CDCl3):
Supplementary data associated with this article can be found, in
d 7.39–7.19 (m, 5H), 5.82 (d, J = 3.8 Hz, 1H), 4.99 (s, 1H), 4.89 (s, 1H), 4.44–4.40
(m, 1H), 4.39 (dd, J = 2.9, 11.6 Hz, 1H), 4.15–4.09 (m, 1H), 4.08–4.05 (m, 1H),
4.01–3.96 (m, 1H), 3.84 (t, J = 11.6 Hz, 1H), 3.49–3.44 (m, 1H), 2.76–2.67 (m,
1H), 2.40–2.25 (m, 2H), 1.46 (s, 3H), 1.29 (s, 3H). 13C NMR (75 MHz, CDCl3): d
142.4, 141.6, 128.4, 127.8, 125.6, 112.8, 111.7, 104.7, 83.7, 80.5, 76.4, 75.9,
72.5, 64.6, 40.0, 39.8, 26.6, 26.1. LCMS: m/z: 367 (M+Na). HRMS Calcd for
References and notes
½ ꢁ +19.8 (C 1.00,
a 2D5
1. (a) Walsh, D. P.; Chang, Y.-T. Chem. Rev. 2006, 106, 2476; (b) Arya, P.; Chou, D. T.
H.; Baek, M.-G. Angew. Chem., Int. Ed. 2001, 40, 339; (c) Kotame, P.; Horng, B.-C.;
Liao, J.-H. Tetrahedron Lett. 2009, 50, 704; (d) Schreiber, S. L. Science 2000, 287,
1964.
2. (a) Posner, G. H. Chem. Rev. 1986, 86, 831; (b) Ho, T.-L. Tandem Organic
Reactions; Wiley-Interscience: New York, 1992; (c) Hall, N. Science 1994, 266,
32; (d) Tietze, L. F. Chem. Rev. 1996, 96, 115; (e) Montgomery, J. Angew. Chem.,
Int. Ed. 2004, 43, 3890; (f) Negishi, E.; Coperet, C.; Ma, S.; Liou, S. Y.; Liu, F. Chem.
Rev. 1996, 96, 365; (g) Miura, T.; Murakami, M. Chem. Commun. 2007, 217; (h)
Agapiou, K.; Cauble, D. F.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 4528; (i)
Subburaj, K.; Montgomery, J. J. Am. Chem. Soc. 2003, 125, 11210; (j) Guo, H. C.;
C
20H24O5Na (M+Na): 367.1521. Found: 367.1526. 3l:
CHCl3); IR (KBr): mmax 2962, 2916, 2850, 1638, 1606, 1440, 1364, 1316, 1243,
1134, 1076, 1018, 960, 886 cmꢂ1 1H NMR (300 MHz, CDCl3):
5.81 (d,
.
d
J = 3.4 Hz, 1H), 4.88 (s, 1H), 4.80 (s, 1H), 4.44–4.34 (m, 1H), 4.06–3.91 (m, 2H),
3.80–3.73 (m, 1H), 3.71–3.61 (m, 1H), 3.43–3.29 (m, 2H), 2.64–2.52 (m, 1H),
2.13–1.97 (m, 1H), 1.88–1.72 (m, 1H), 1.62–1.52 (m, 1H), 1.49 (s, 3H), 1.29 (s,
3H), 1.34–1.14(m, 2H), 0.92 (d, J = 6.2 Hz), 0.89 (d, J = 6.2 Hz). 13C NMR
(75 MHz, CDCl3): d 143.0, 112.0, 111.5, 104.5, 83.7, 77.0, 76.2, 76.0, 71.9, 64.3,
45.1, 40.2, 38.0, 26.5, 25.9, 24.1, 23.0, 22.2. LCMS: m/z: 347 (M+Na). HRMS
Calcd for C18H28O5Na(M+Na):347.1834. Found:347.1836.