L. W. Peterson et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4045–4049
8. Hostetler, K. Y. Antiviral Res. 2009, 82, A84.
4049
Another reason for the observed differences in antiviral activity
might be the expression of different viral-encoded enzymes that
activate the prodrugs.31–35 Recent reports describe the presence
of a serine/threonine phosphatase encoded by HCMV,31,32 while a
dual specificity tyrosine/serine phosphatase, encoded by VV33–35
is expressed late in the virus life cycle.33,35 It is unknown whether
these enzymes would accept the phosphonate-amino acid conju-
gates, and additional studies will be necessary to elucidate the fac-
tors contributing to the observed differences in prodrug antiviral
activity.
9. McGuigan, C.; Gilles, A.; Madela, K.; Aljarah, M.; Holl, S.; Jones, S.; Vernachio, J.;
Hutchins, J.; Ames, B.; Bryant, K. D.; Gorovits, E.; Ganguly, B.; Hunley, D.; Hall,
A.; Kolykhalov, A.; Liu, Y. L.; Muhammad, J.; Raja, N.; Walters, R.; Wang, J.;
Chamberlain, S.; Henson, G. J. Med. Chem. 2010, 53, 4949.
10. McKenna, C. E.; Peterson, L. W.; Kashemirov, B. A.; Serpi, M.; Mitchell, S.; Kim, J.
S.; Hilfinger, J. M.; Drach, J. C. Antiviral Res. 2009, 82, A75.
11. Peterson, L. W.; Kashemirov, B. A.; Blazewska, K. M.; Breitenback, J.; Borysko,
K.; Drach, J. C.; Kim, J. S.; Kijek, P.; Hilfinger, J. M.; McKenna, C. E. Antiviral Res.
2007, 74, A33.
12. Eriksson, U.; Hilfinger, J. M.; Kim, J.-S.; Mitchell, S.; Kijek, P.; Borysko, K. Z.;
Breitenbach, J. M.; Drach, J. C.; Kashemirov, B. A.; McKenna, C. E. Bioorg. Med.
Chem. Lett. 2007, 17, 583.
13. Eriksson, U.; Peterson, L. W.; Kashemirov, B. A.; Hilfinger, J. M.; Drach, J. C.;
Borysko, K. Z.; Breitenbach, J. M.; Kim, J. S.; Mitchell, S.; Kijek, P.; McKenna, C. E.
Mol. Pharm. 2008, 5, 598.
In summary, two classes of peptidomimetic prodrugs of 1 in
which the P(OH)2 was esterified by an Ala–(Val–)L-Ser–CO2R
dipeptide promoiety, with the second P–OH either esterified by
an ethyl group or left unmodified, were synthesized and evaluated
for their transport properties and for their in vitro antiviral activity.
The synthesis of the POEt prodrugs 4 and 5 of 1 was accomplished
using a one pot method to prepare the ethyl ester of trityl-
protected 1 followed by conjugation to the dipeptide promoiety
using PyBOP. After unsatisfactory attempts to mono-esterify the
phosphonate group of 1, prodrugs 6 and 7 were prepared from
their corresponding cyclic forms using basic conditions to open
the phosphonate ring. Administration of 7 to the rat by oral injec-
tion resulted in a 15-fold increase in total cidofovir species in the
plasma relative to 1 or 2, despite the presence of one ionizable
P–OH group in this prodrug. This enhanced oral bioavailability
may be due to higher chemical and enzymatic stability compared
to its cyclic analogue 15. Improved stability might explain why
14. McKenna, C. E.; Kashemirov, B. A.; Eriksson, U.; Amidon, G. L.; Kish, P. E.;
Mitchell, S.; Kim, J.-S.; Hilfinger, J. M. J. Organomet. Chem. 2005, 690, 2673.
15. Peterson, L. W.; Sala-Rabanal, M.; Krylov, I. S.; Serpi, M.; Kashemirov, B. A.;
McKenna, C. E. Mol. Pharm. 2010, 7, 2349.
16. Hostetler, K. Y. Adv. Antiviral Drug Des. 2007, 5, 167.
17. Hostetler, K. Y.; Beadle, J. R.; Hornbuckle, W. E.; Bellezza, C. A.; Tochkov, I. A.;
Cote, P. J.; Gerin, J. L.; Korba, B. E.; Tennant, B. C. Antimicrob. Agents Chemother.
2000, 44, 1964.
18. Hostetler, K. Y.; Rybak, R. J.; Beadle, J. R.; Gardner, M. F.; Aldern, K. A.; Wright, K.
N.; Kern, E. R. Antiviral Chem. Chemother. 2001, 12, 61.
19. Peterson, L. W.; Kashemirov, B. A.; Eriksson, U.; Kim, J. S.; Mitchell, S.; Kijek, P.;
Lee, K. D.; Hilfinger, J. M.; McKenna, C. E. Antiviral Res. 2008, 78, A46.
20. Zervas, L.; Dilaris, I. J. Am. Chem. Soc. 1955, 77, 5354.
21. Krawczyk, H. Synth. Commun. 1997, 27, 3151.
22. Rensing, S.; Arendt, M.; Springer, A.; Grawe, T.; Schrader, T. J. Org. Chem. 2001,
66, 5814.
23. McKenna, C. E.; Kashemirov, B. A.; Blazewska, K. M. In Science of Synthesis,
Houben-Weyl Methods of Molecular Transformation; Trost, B. M., Ed.; Georg
Thieme Verlag: Stuttgart, 2009; 42, p 779.
24. Racha, S.; Vargeese, C.; Vemishetti, P.; ElSubbagh, H. I.; Abushanab, E.; Panzica,
R. P. J. Med. Chem. 1996, 39, 1130.
the IC50 value of 7 (1.3 lM) against HCMV in vitro was 4-fold less
than that of 6. We are currently investigating the relationship
between transport and activation, in an attempt to determine an
optimal balance between the two processes.
25. McKenna, C. E.; Schmidhauser, J. J. Chem. Soc., Chem. Commun. 1979, 739.
26. Mahmoud, K. A.; Long, Y. T.; Schatte, G.; Kraatz, H. B. Eur. J. Inorg. Chem. 2005,
173.
27. Compound 4: 1H NMR (400 MHz, CD3OD): d 1.36 (t, J = 6.2 Hz, 3H), 1.58 (d,
J = 7.0 Hz, 3H), 3.62–4.46 (m, 16H), 6.00 (d, J = 7.4 Hz, 1H), 7.72 (d, J = 7.4 Hz,
0.3H), 7.77 (d, J = 7.4 Hz, 0.7H). 31P NMR (202 MHz, CD3OD): d 22.61 (s, 0.74P),
23.09 (s, 0.26P). HRMS-FAB m/z [M+H]+ calcd for C17H30N5O9P: 480.1859.
Acknowledgments
Found: 480.1863. Anal. calcd for
C
17H30N5O9PÁ3(C2HO2F3)Á0.5(C4H10O) C,
This work was supported by grants AI061457 and AI091216
from the National Institutes of Health. L.W.P. was a 2007–2008
Stauffer Fellow and a 2008–2009 WiSE Merit Fellow.
34.97%; H, 4.46%; N, 8.16%. Found: C, 34.68%; H, 4.22%; N, 8.09%. Compound
5: 1H NMR (400 MHz, CD3OD): d 1.12 and 1.14 (d, J = 6.7 Hz, 6H), 1.33–1.37 (m,
3H), 2.29 (m, 1H), 3.60–4.46 (m, 16H), 5.93 (d, J = 7.3 Hz, 1H), 7.61 (d, J = 7.3 Hz,
0.3H), 7.65 (d, J = 7.3 Hz, 0.7H). 31P NMR (162 MHz, CD3OD): d 22.60 (s, 0.65P),
23.17 (s, 0.35P). HRMS–FAB m/z [M+H]+ calcd for C19H34N5O9P: 508.2172.
Found: 508.2180.
Supplementary data
28. Wan, W. B.; Beadle, J. R.; Hartline, C.; Kern, E. R.; Ciesla, S. L.; Valiaeva, N.;
Hostetler, K. Y. Antimicrob. Agents Chemother. 2005, 49, 656.
29. Compound 6: 1H NMR (400 MHz, D2O): d 0.95 (d, J = 6.9 Hz, 6H), 1.11 and 1.13
(2d, J = 6.2 Hz, 6H), 2.12 (m, 1H), 3.43–3.49 (m, 2H), 3.59–3.77 (m, 5H), 3.90–
4.01 (m, 2H), 4.05–4.11 (m, 1H), 4.57 (m, 1H), 4.91 (sept, 1H), 5.90 (d, J = 6.9 Hz,
1H), 7.53 (d, J = 7.4 Hz, 1H). 31P NMR (162 MHz, CD3OD): d 17.32 (s, 1P). HRMS-
FAB m/z [M+H]+calcd for C19H34N5O9P: 508.2167. Found: 508.2168. LC–MS:
Rt = 14.92 min; [M+H]+ 508.1. Compound 7: 1H NMR (400 MHz, D2O): d 0.91
and 0.92 (2d, J = 6.8 Hz, 6H), 1.12 and 1.14 (2d, J = 6.2 Hz, 6H), 2.05–2.17 (m,
1H), 3.46–3.52 (m, 2H), 3.60–3.79 (m, 5H), 3.99–4.05 (m, 2H), 4.10–4.16 (m,
1H), 4.51–4.53 (m, 1H), 4.93 (sept, 1H), 6.04 (d, J = 7.8 Hz, 1H), 7.73 (d,
J = 7.8 Hz, 1H). 31P NMR (162 MHz, D2O): d 16.90. HRMS–FAB m/z [M+H]+ calcd
for C19H34N5O9P: 508.2167. Found: 508.2172.
Supplementary data (experimental details, including synthesis
of prodrugs, oral bioavailability and antiviral assays, and 1H and
31P NMR spectra for intermediates and compounds 4, 5, 6 and 7)
associated with this article can be found in the online version at
References and notes
1. De Clercq, E. Clin. Microbiol. Rev. 2003, 16, 569.
2. De Clercq, E.; Sakuma, T.; Baba, M.; Pauwels, R.; Balzarini, J.; Rosenberg, I.; Holy,
A. Antiviral Res. 1987, 8, 261.
30. Keith, K. A.; Wan, W. B.; Ciesla, S. L.; Beadle, J. R.; Hostetler, K. Y.; Kern, E. R.
Antimicrob. Agents Chemother. 2004, 48, 1869.
3. De Clercq, E.; Neyts, J. Rev. Med. Virol. 2004, 14, 289.
4. Wachsman, M.; Petty, B. G.; Cundy, K. C.; Jaffe, H. S.; Fisher, P. E.; Pastelak, A.;
Lietman, P. S. Antiviral Res. 1996, 29, 153.
5. Cundy, K. C.; Bidgood, A. M.; Lynch, G.; Shaw, J. P.; Griffin, L.; Lee, W. A. Drug
Metab. Dispos. 1996, 24, 745.
31. Hakki, M.; Geballe, A. P. Virology 2008, 380, 255.
32. Michelson, S.; Turowski, P.; Picard, L.; Goris, J.; Landini, M. P.; Topilko, A.;
Hemmings, B.; Bessia, C.; Garcia, A.; Virelizier, J. L. J. Virol. 1996, 70, 1415.
33. Najarro, P.; Traktman, P.; Lewis, J. A. J. Virol. 2001, 75, 3185.
34. Guan, K. L.; Broyles, S. S.; Dixon, J. E. Nature 1991, 350, 359.
35. Liu, K.; Lemon, B.; Traktman, P. J. Virol. 1995, 69, 7823.
6. Peterson, L. W.; McKenna, C. E. Expert Opin. Drug Delivery 2009, 6, 405.
7. Meier, C.; Balzarini, J. Antiviral Res. 2006, 71, 282.