A. Dos Santos, L. El Kaïm, L. Grimaud, C. Ronsseray
SHORT COMMUNICATION
Dömling, Curr. Opin. Chem. Biol. 2002, 6, 306–313; e) J. Zhu,
H. Bienaymé (Eds.), Multicomponent Reactions, Wiley-VCH,
Weinheim, 2005; f) A. Dömling, Chem. Rev. 2006, 106, 17–89;
g) R. V. A. Orru, M. de Greef, Synthesis 2003, 1471–1499.
For some reviews, see: a) H. M. L. Davies, E. J. Sorensen,
Chem. Soc. Rev. 2009, 38, 2981–2982; b) K. C. Nicolaou, D. J.
Edmonds, P. G. Bulger, Angew. Chem. Int. Ed. 2006, 45, 7134–
7186; c) C. Grondal, M. Jeanty, D. Enders, Nature Chem. 2010,
2, 167–178.
For some reviews, see: a) T. Punniyamurthy, S. Velusamy, J.
Iqbal, Chem. Rev. 2005, 105, 2329–2363; b) T. Punniyamurthy,
L. Rout, Coord. Chem. Rev. 2008, 252, 134–154; c) I. E. Marko,
P. R. Giles, M. Tsukazaki, A. Gautier, R. Dumeunier, K.
Dodo, F. Philippart, I. Chelle-Regnault, J.-L. Mutonkole, S. M.
Brown, C. J. Urch, Aerobic, Metal-Catalyzed Oxidation Of
Alcohols, Transition Metals for Organic Synthesis; Wiley-VCH,
Weinheim, 2004, vol. 2, pp. 437–478; d) S. M. Samec, A. H.
Ell, J.-E. Bäckvall, Chem. Eur. J. 2005, 11, 2327–2334.
L. El Kaim, R. Gamez-Montano, L. Grimaud, T. Ibarra-Ri-
vera, Chem. Commun. 2008, 1350–1352.
though low yielding, this transformation represents an im-
pressive cascade with copper-catalyzed oxidative steps of
high synthetic value.
[2]
[3]
Conclusions
As a conclusion, we have disclosed a new aerobic oxidat-
ive cascade sequence involving hydrazones. The starting
materials were prepared by a three-component coupling of
acyl chlorides with aryl diazonium salts and allylamines.
The whole process involves multiple reactive pathways de-
pending on the choice of solvent. Dealing with the develop-
ment of new aerobic oxidations, hydrazine derivatives are
of special interest, as their easy oxidation may be used to
functionalize the carbon atoms linked to the nitrogen
atoms. We have already exploited this property in an aero-
bic cyclization of amidrazones into triazoles.[16] Presently,
we are further studying the mechanism of these reactions
to extend these strategies to other families.
[4]
[5]
Some representatives studies: a) V. Atlan, L. El Kaim, C. Su-
piot, Chem. Commun. 2000, 1385–1386; b) V. Atlan, H. Bien-
ayme, L. El Kaim, A. Majee, Chem. Commun. 2000, 1585–
1586; c) L. El Kaim, L. Grimaud, Y. Perroux, J. Org. Chem.
2003, 68, 8733–8735.
[6]
a) H. Suginome, T. Uchida, Bull. Chem. Soc. Jpn. 1980, 53,
3225–3231; b) E. I. Khizhan, T. A. Filippenko, A. N. Nikolaev-
skii, Russ. J. Appl. Chem. 2004, 3, 423–426; c) M. Harej, D.
Dolenc, J. Org. Chem. 2007, 72, 7214–7221.
Experimental Section
Typical Experimental Procedure for 2a: To a 0.06-m solution of hy-
drazone 1a in DMF/H2O/CH3COOH (10:20:70) was added
Cu(OAc)2 (20 mol-%). The resulting mixture was heated at 80 °C
under an atmosphere of argon. The solution was then adjusted to
pH 6 with an aqueous solution of sodium hydrogencarbonate. Af-
ter extraction of the aqueous solution with AcOEt, the organic
layers were washed with water, dried with anhydrous MgSO4, fil-
tered, and concentrated in vacuo. The crude product was isolated
by flash chromatography on silica gel (petroleum ether/Et2O, 20:80
+ 2% TEA). M.p. 149–150 °C. 1H NMR (400 MHz,CDCl3): δ =
7.54 (s, 1 H), 7.51 (d, J = 8.3 Hz, 1 H), 7.18 (dd, J = 5.1, 1.0 Hz,
1 H), 7.14 (d, J = 8.3 Hz, 1 H), 6.95 (dd, J = 5.1, 3.5 Hz, 1 H),
6.87–6.86 (m, 1 H), 5.72 (ddt, J = 16.4, 10.1, 6.1 Hz, 1 H), 5.27 (d,
J = 10.1 Hz, 1 H), 5.23 (d, J = 16.4 Hz, 1 H), 5.01 (br. s, 1 H), 4.03
(dd, J = 15.2, 6.1 Hz, 1 H), 3.93 (dd, J = 15.2, 6.1 Hz, 1 H), 3.73
(d, J = 10.4 Hz, 1 H), 3.57 (dd, J = 10.4, 6.8 Hz, 1 H), 3.24 (d, J
= 6.8 Hz, 1 H), 3.14–2.99 (m, 2 H), 2.37–2.30 (m, 2 H), 2.28 (s, 3
H), 2.25 (s, 3 H) ppm. 13C NMR (100.6 MHz, CDCl3): δ = 173.5,
168.1, 143.4, 137.7, 135.6, 134.5, 131.5, 130.3, 127.4, 125.1, 124.1,
120.8, 119.6, 117.1, 66.2, 47.3, 46.2, 46.0, 35.6, 24.9, 20.4,
[7]
[8]
L. El Kaim, L. Grimaud, C. Ronsseray, Synlett 2010, 2296–
2298.
When the reaction was performed in an open flask, degrada-
tion was observed and the yields dropped. The best results were
obtained by using commercially available DMF (reagent
grade), heating under an argon atmosphere. Under such condi-
tions, we believe that oxygen still enters slowly into the medium
allowing oxidation and the formation of a small amount of
byproducts.
a) R. Grigg, J. Kemp, N. Thompson, Tetrahedron Lett. 1978,
19, 2827–2830; b) R. Grigg, M. Dowling, M. W. Jordan, V.
Sridharan, Tetrahedron 1987, 43, 5873–5886; c) B. B. Snider,
R. S. E. Conn, S. Sealfon, J. Org. Chem. 1979, 44, 218–221; d)
G. L. Fevre, J. Hamelin, Tetrahedron Lett. 1979, 20, 1757–1760;
e) Y. A. Ibrahim, S. E. Abdou, S. Selim, Heterocycles 1982, 19,
819–824; f) M. A. Badawy, S. A. El-Bahaie, A. M. Kadry, Y. A.
Ibrahim, Heterocycles 1988, 27, 7; g) V. V. Khau, M. J. Marti-
nelli, Tetrahedron Lett. 1996, 37, 4323–4326; h) B. Sun, K. Ad-
achi, M. Noguchi, Tetrahedron 1996, 52, 901–914.
a) G. L. Fevre, S. Sinbandhit, J. Hamelin, Tetrahedron 1979,
35, 1821–1824; b) B. Fouchet, M. Joucla, J. Hamelin, Tetrahe-
dron Lett. 1981, 22, 1333–1336; c) T. Shimizu, Y. Hayashi, S.
Ishikawa, K. Teramura, Bull. Chem. Soc. Jpn. 1982, 55, 2456–
2459; d) T. Shimizu, Y. Hayashi, M. Miki, K. Teramura, J. Org.
Chem. 1987, 52, 2277–2285.
a) S. Kobayashi, R. Hirabayashi, H. Shimizu, H. Ishitani, Y.
Yamashita, Tetrahedron Lett. 2003, 44, 3351–3354; b) Y. Yama-
shita, S. Kobayashi, J. Am. Chem. Soc. 2004, 126, 11279–22282;
c) E. Frank, Z. Kardos, J. Wolfling, G. Schneider, Synlett 2007,
1311–1313; d) J. Gergely, J. B. Morgan, L. E. Overman, J. Org.
Chem. 2006, 71, 9144–9152.
[9]
[10]
[11]
19.7 ppm. IR (thin film): ν = 3211, 2924, 1684, 1507, 1440, 1422,
˜
1351, 1273 cm–1. HRMS: calcd for C22H25N3O2S 395.1667; found
395.1672.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and spectroscopic data for all new
compounds.
Acknowledgments
[12]
[13]
M. I. Javed, J. M. Wyman, M. Brewer, Org. Lett. 2009, 11,
2189–2192.
We thank the Ecole Nationale Supérieure de Techniques Avancées
(ENSTA) for financial support, and C.R. thanks the Ecole Poly-
technique for a fellowship.
a) V. V. Zhdankin, P. J. Stang, Chem. Rev. 2008, 108, 5299–
5358; b) A. Maiti, J. S. Yadav, Synth. Commun. 2001, 31, 1499–
1506; c) C. Martin, N. Macintosh, N. Lamb, A. G. Fallis, Org.
Lett. 2001, 3, 1021–1023; d) T. Ngouansavanh, J. Zhu, Angew.
Chem. Int. Ed. 2006, 45, 3495–3497; e) G. Jiang, J. Chen, J.-S.
Huang, C.-M. Che, Org. Lett. 2009, 11, 4568–4571; f) M. Beau-
lieu, C. Sabot, N. Achache, K. Guerard, S. Canesi, Chem. Eur.
J. 2010, 16, 11224–11339.
[1] For some reviews, see: a) A. Dömling, I. Ugi, Angew. Chem.
Int. Ed. 2000, 39, 3168–3210; b) H. Bienaymé, C. Hulme, G.
Oddon, P. Schmitt, Chem. Eur. J. 2000, 6, 3321–3329; c) I. Ugi,
B. Werner, A. Dömling, Molecules 2003, 8, 53–66; d) A.
3120
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 3117–3121