A. Popitsch, B. F. Chmelka and G. D. Stucky, Chem. Commun.,
2002, 2474–2475.
4. Conclusions
7 D. Y. Zhao, J. Y. Sun, Q. Z. Li and G. D. Stucky, Chem. Mater.,
2000, 12, 275–279; D. Y. Zhao, Q. S. Huo, J. P. Feng, N. Melosh,
G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science, 1998,
279, 548–552; J. Feng, H. J. Zhang, C. Y. Peng, J. B. Yu,
R. P. Deng, L. N. Sun and X. M. Guo, Microporous Mesoporous
Mater., 2008, 113, 402–410.
8 C. Y. Peng, H. J. Zhang, J. B. Yu, Q. G. Meng, L. S. Fu, H. R. Li,
L. N. Sun and X. M. Guo, J. Phys. Chem. B, 2005, 109, 15278–
15287; L. S. Li, Y. Zhang, J. B. Yu, C. Y. Peng and H. J. Zhang, J.
Photochem. Photobiol., A, 2008, 199, 57–63; C. Y. Peng,
H. J. Zhang, Q. G. Meng, H. R. Li, J. B. Yu, J. F. Guo and
L. N. Sun, Inorg. Chem. Commun., 2005, 8, 440–443.
9 Y. Li, B. Yan and H. Yang, J. Phys. Chem. C, 2008, 112, 3959–3968;
B. Yan and Y. Li, Dalton Trans., 2010, 39, 1480–1487; Y. J. Li and
B. Yan, Inorg. Chem., 2009, 48, 8276–8285; L. L. Kong, B. Yan and
Y. Li, J. Solid State Chem., 2009, 182, 1631–1637; L. L. Kong,
B. Yan and Y. Li, J. Alloys Compd., 2009, 481, 549–554; Y. J. Li,
B. Yan and Y. Li, Chem.–Asian J., 2010, 5, 1642–1651; Y. J. Li,
B. Yan and Y. Li, Microporous Mesoporous Mater., 2010, 131, 82–
88; Y. J. Li, L. Wang and B. Yan, J. Mater. Chem., 2011, 21, 1130–
1138.
In summary, ternary europium luminescent mesoporous hybrid
titania material Eu(Ti-MAB-S15)2(NTA)3 was successfully
prepared by linking lanthanide complexes Eu(NTA)3$2H2O
complex to the mesoporous hybrid titania material Ti-MAB-S15
via a ligand exchange reaction, which provides a representative
method for assembling luminescent lanthanide molecular-based
hybrid materials containing ordered mesoporous Si–O network
and amorphous Ti–O network simultaneously. The obtained
material preserves the ordered mesoporous structures and shows
highly uniform pore size distributions. Further investigation on
the luminescence properties confirm that the europium meso-
porous hybrid titania material Eu(Ti-MAB-S15)2(NTA)3
5
exhibits higher D0 luminescence quantum efficiency and longer
lifetime than the pure Eu(NTA)3$2H2O complex and binary
mesoporous hybrid titania material Eu(Ti-MAB-S15)4. In addi-
tion, this reaction principle is not limited to europium
compounds but can be extended to other lanthanide compounds
that emit in the visible and near-infrared regions, thus opening
a door for the development of new materials. The excellent
luminescent properties of this kind of material, together with the
highly ordered mesoporous structures containing Ti–O network
will expand their applications in optical or electronic areas.
10 C. Sanchez, B. Julian, P. Belleville and M. Popall, J. Mater. Chem.,
2005, 15, 3559–3592; P. Wang, C. Klein, R. Humphry,
€
S. Zakeeruddin and M. Gratzel, J. Am. Chem. Soc., 2005, 127, 808–
809.
11 P. Liu, H. R. Li, Y. G. Wang, B. Y. Liu, W. J. Zhang, Y. J. Wang,
W. D. Yan, H. J. Zhang and U. Schubert, J. Mater. Chem., 2008,
18, 735–737; H. R. Li, P. Liu, Y. G. Wang, L. Zhang, J. B. Yu,
H. J. Zhang, B. Y. Liu and U. Schubert, J. Phys. Chem. C, 2009,
113, 3945–3949.
€
12 K. Binnemans, P. Lenaerts, K. Driesen and C. Gorller-Walrand, J.
Mater. Chem., 2004, 14, 191–195.
Acknowledgements
13 J. B. Yu, H. J. Zhang, L. S. Fu, R. P. Deng, L. Zhou, H. R. Li,
F. Y. Liu and H. L. Fu, Inorg. Chem. Commun., 2003, 6, 852–854.
14 Q. M. Wang and B. Yan, J. Mater. Chem., 2004, 14, 2450–2454.
15 H. P. Wang, Y. F. Ma, H. Tian, N. Tang, W. S. Liu, Q. Wang and
Y. Tang, Dalton Trans., 2010, 39, 7485–7492.
This work was supported by the National Natural Science
Foundation of China (20971100) and Program for New Century
Excellent Talents in University (NCET-08-0398) and Developing
Science Funds of Tongji University.
16 M. Kruk and M. Jaroniec, Chem. Mater., 2001, 13, 3169–3183;
W. H. Zhang, X. B. Lu, J. H. Xiu, Z. L. Hua, L. X. Zhang,
M. Robertson, J. L. Shi, D. S. Yan and J. D. Holmes, Adv. Funct.
Mater., 2004, 14, 544–552.
References
1 M. D. McGehee, T. Bergstedt, C. Zhang, A. P. Saab, M. B. O’Regan,
G. C. Bazan, V. I. Srdanov and A. J. Heeger, Adv. Mater., 1999, 11,
1349–1354; J. M. Lehn, Angew. Chem., 1990, 102, 1347–1362;
J. M. Lehn, Angew. Chem., Int. Ed. Engl., 1990, 29, 1304–1319;
C. Koeppen, S. Yamada, G. Jiang, A. F. Garito and L. R. Dalton,
J. Opt. Soc. Am. B, 1997, 14, 155–162; X. M. Guo, H. D. Guo,
L. S. Fu, R. P. Deng, W. Chen, J. Feng, S. Dang and H. J. Zhang,
J. Phys. Chem. C, 2009, 113, 2603–2610.
17 H. R. Li, J. Lin, H. J. Zhang, L. S. Fu, Q. G. Meng and S. B. Wang,
Chem. Mater., 2002, 14, 3651–2655; P. C. R. Soares-Santos,
ꢁ
ꢁ
H. I. S. Nogueira, V. Felix, M. G. B. Drew, R. A. Sa Ferreira,
L. D. Carlos and T. Trindade, Chem. Mater., 2003, 15, 100–108.
18 L. N. Sun, H. J. Zhang, C. Y. Peng, J. B. Yu, Q. G. Meng, L. S. Fu,
F. Y. Liu and X. M. Guo, J. Phys. Chem. B, 2006, 110, 7249–7258.
€
19 E. Guillet, D. Imbert, R. Scopelliti and J. C. G. Bunzli, Chem. Mater.,
2004, 16, 4063–4070; F. Renaud, C. Piguet, G. Bernardinelli,
€
2 D. J. Zhang, X. M. Wang, Z. A. Qiao, D. H. Tang, Y. L. Liu and
J. C. G. Bunzli and G. Hopfgartner, Chem.–Eur. J., 1997, 3, 1660–
ꢁ
Q. S. Huo, J. Phys. Chem. C, 2010, 114, 12505–12510; G. F. DeSa,
O. L. Malta, C. De Mello Donega, A. M. Simas, R. L. Longo,
1667; W. Q. Fan, J. Feng, S. Y. Song, Y. Q. Lei, G. L. Zheng and
H. J. Zhang, Chem.–Eur. J., 2010, 16, 1903–1910.
ꢁ
P. A. Santa-Cruz and E. F. da Silva Jr., Coord. Chem. Rev., 2000,
196, 165–195; N. Sabbatini, M. Guardingli and J. M. Lehn, Coord.
Chem. Rev., 1993, 123, 201–228; M. Q. Tan, Z. Q. Ye, G. L. Wang
and J. L. Yuan, Chem. Mater., 2004, 16, 2494–2498; P. Escribano,
20 M. H. V. Werts, R. T. F. Jukes and J. W. Verhoeven, Phys. Chem.
Chem. Phys., 2002, 4, 1542–1548; E. E. S. Teotonio,
J. G. P. Espinola, H. F. Brito, O. L. Malta, S. F. Oliveria,
D. L. A. de Faria and C. M. S. Izumi, Polyhedron, 2002, 21, 1837–
1844; L. D. Carlos, V. D. Bermudez, R. A. S. Ferreira, L. Marques
and M. Assuncao, Chem. Mater., 1999, 11, 581–588; L. N. Sun,
H. J. Zhang, C. Y. Peng, J. B. Yu, Q. G. Meng, L. S. Fu, F. Y. Liu
and X. M. Guo, J. Phys. Chem. B, 2006, 110, 7249–7258.
21 J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini and
M. Bettinelli, J. Phys. Chem. B, 2004, 108, 20137–20144.
22 H. R. Li, P. Liu, Y. G. Wang, L. Zhang, J. B. Yu, H. J. Zhang,
B. Y. Liu and U. Schubert, J. Phys. Chem. C, 2009, 113, 3945–3949.
23 R. M. Supkowski and W. D. Horrocks, Inorg. Chim. Acta, 2002, 340,
44–48.
ꢁ
ꢁ
ꢁ
B. Julian-Lopez, J. Planelles-Arago, E. Cordoncillo, B. Viana and
C. Sanchez, J. Mater. Chem., 2008, 18, 23–40.
3 L. H. Wang, W. Wang, W. G. Zhang, E. T. Kang and W. Huang,
Chem. Mater., 2000, 12, 2212–2218; L. D. Carlos and
A. L. L. Videira, Phys. Rev. B: Condens. Matter, 1994, 49, 11721–
11728.
ꢁ
4 R. Van Deun, D. Moors, B. De Fre and K. Binnemans, J. Mater.
Chem., 2003, 13, 1520–1522.
5 D. Sendor and U. Kynast, Adv. Mater., 2002, 14, 1570–1574;
H. Maas, A. Currao and G. Calzaferri, Angew. Chem., Int. Ed.,
2002, 41, 2495–2497; P. Minoofar, R. Hernandez, S. Chia,
B. Dunn, J. I. Zink and A. C. Franville, J. Am. Chem. Soc., 2002,
124, 14388–14396.
24 W. F. Krupke, Phys. Rev., 1966, 145, 325–327.
25 Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio and
X. Y. Chen, J. Phys. Chem. C, 2008, 112, 686–694.
6 Q. H. Xu, L. S. Li, X. S. Liu and R. R. Xu, Chem. Mater., 2002, 14,
549–555; M. H. Bartl, B. J. Scott, H. C. Huang, G. Wirnsberger,
26 Q. B. Xiao, Y. S. Liu, L. Q. Liu, R. F. Li, W. Q. Luo and X. Y. Chen,
J. Phys. Chem. C, 2010, 114, 9314–932.
8136 | J. Mater. Chem., 2011, 21, 8129–8136
This journal is ª The Royal Society of Chemistry 2011