Scheme 1. Construction of δ-Lactones through HDA Reactions
of Brassard Dienes with Aldehydes
Figure 1. Natural products containing a β-hydroxy-γ-methyl-δ-
lactone structure.
Danishefsky-type dienes,7,12 Brassard’s diene has been
less efficiently developed in the catalytic asymmetric
HDA reaction with aldehydes.13,14 As a developing
area, up to now, the HDA reactions of Brassard’s diene
1 with aromatic15 and aliphatic16 aldehydes have been
realized by chiral Ti(IV) complexes or a TADDOL
organocatalyst (Scheme 1A). At the same time, the
HDA reaction of Brassard-type diene 2 with aromatic
aldehydes has also been achieved by Cu(II)/Schiff base
complexes (Scheme 1B).17 However, to the best of our
knowledge, no efficient catalytic system has been de-
veloped for the asymmetric HDA reaction of Brassard-
type diene 2 with aliphatic aldehydes,18 although the
corresponding adducts could be easily transformed to
the building blocks existing in many natural products
(Figure 1) by hydrogenation. So, it is highly meaningful
to explore efficient catalytic systems for the asymmetric
HDA reaction of Brassard-type diene 2 with aliphatic
aldehydes.
It is well-known that the indium, which is three times as
abundant as silver, is particularly effective at activating
carbonyl groups.12b,19 On the other hand, the chiral N,
N0-dioxideꢀmetal complexes, which have a tunable chiral
environment via modifying their electronic properties or
steric hindrance, have been successfully applied in many
asymmetric reactions.20 Herein, we report our efforts in
(7) For some reviews on the hetero DielsꢀAlder reaction, see: (a)
Jørgensen, K. A. Angew. Chem., Int. Ed. 2000, 39, 3558. (b) Jørgensen,
K. A. Eur. J. Org. Chem. 2004, 2093. (c) Kagan, H. B.; Riant, O.
Chem. Rev. 1992, 92, 1007. (d) Corey, E. J. Angew. Chem., Int. Ed.
2002, 41, 1650. (e) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.;
Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668. (f)
Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325. (g) Lin,
L. L.; Liu, X. H.; Feng, X. M. Synlett. 2007, 2147. (h) Danishefsky, S.
Acc. Chem. Res. 1981, 14, 400.
(8) Savard, J.; Brassard, P. Tetrahedron Lett. 1979, 20, 4911.
(9) For asymmetric synthesis using optically active aldehydes, see: (a)
Midland, M. M.; Koops, R. W. J. Org. Chem. 1990, 55, 4647. (b)
Midland, M. M.; Koops, R. W. J. Org. Chem. 1990, 55, 5058. (c)
Midland, M. M.; Afonso, M. M. J. Am. Chem. Soc. 1989, 111, 4368.
€
(d) Blaser, E.; Kolar, P.; Fenske, D.; Goesmann, H.; Waldmann, H. Eur.
J. Org. Chem. 1999, 329.
(10) Winkler, J. D.; Oh, K. Org. Lett. 2005, 7, 2421.
(11) Togni, A. Organometallics 1990, 9, 3106.
(12) For some studies, see: (a) Ujaque, G.; Lee, P. S.; Houk, K. N.;
Hentemann, M. F.; Danishefsky, S. J. Chem.;Eur. J. 2002, 8, 3423. (b)
Yu, Z. P.; Liu, X. H.; Dong, Z. H.; Xie, M. S.; Feng, X. M. Angew.
Chem., Int., Ed. 2008, 47, 1308. (c) Long, J.; Hu, J.; Shen, X.; Ji, B.; Ding,
K. J. Am. Chem. Soc. 2002, 124, 10. (d) Yuan, Y.; Li, X.; Sun, J.; Ding,
K. L. J. Am. Chem. Soc. 2002, 124, 14866. (e) Yamashita, Y.; Saito, S.;
Ishitani, H.; Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 3793. (f) Unni,
A. K.; Takenaka, N.; Yamamoto, H.; Rawal, V. H. J. Am. Chem. Soc.
2005, 127, 1336. (g) Thompson, C. F.; Jamison, T. F.; Jacobsen, E. N.
J. Am. Chem. Soc. 2001, 123, 9974. (h) Simonsen, K. B.; Svenstrup, N.;
Roberson, M.; Jørgensen, K. A. Chem.;Eur. J. 2000, 6, 123. (i)
Momiyama, N.; Tabuse, H.; Terada, M. J. Am. Chem. Soc. 2009, 131,
12882. (j) Chen, I.-H.; Oisaki, K.; Kanai, M.; Shibasaki, M. Org. Lett.
2008, 10, 5151. (k) Yang, X. B.; Feng, J.; Zhang, J.; Wang, N.; Wang, L.;
Liu, J. L.; Yu, X. Q. Org. Lett. 2008, 10, 1299.
(17) Lin, L. L.; Fan, Q.; Qin, B.; Feng, X. M. J. Org. Chem. 2006, 71,
4141.
(13) For examples of highly enantioselective aza-DielsꢀAlder reac-
tion of Brassard’s diene with imines, see: (a) Itoh, J.; Fuchibe, K.;
Akiyama, T. Angew. Chem., Int. Ed. 2006, 45, 4796. (b) Chen, Z. L.; Lin,
L. L.; Chen, D. H.; Li, J. T.; Liu, X. H.; Feng, X. M. Tetrahedron Lett.
2010, 51, 3088.
(14) Vinylogous aldol reaction of Brassard’s diene with aldehydes;
see: Wang, G. W.; Zhao, J. F.; Zhou, Y. H.; Wang, B. M.; Qu, J. P. J.
Org. Chem. 2010, 75, 5326.
(15) (a) Fan, Q.; Lin, L. L.; Liu, J.; Huang, Y. Z.; Feng, X. M.;
Zhang, G. L. Org. Lett. 2004, 6, 2185. (b) Fan, Q.; Lin, L. L.; Liu, J.;
Huang, Y. Z.; Feng, X. M. Eur. J. Org. Chem. 2005, 3542. (c) Du, H. F.;
Zhao, D. B.; Ding, K. L. Chem.;Eur. J. 2004, 10, 5964.
(16) Lin, L. L.; Chen, Z. L.; Yang, X.; Liu, X. H.; Feng, X. M. Org.
Lett. 2008, 10, 1311.
(18) 15% yield, 59/41 trans/cis, and 73% ee were obtained for
n-butanal. 58% yield, 10/90 cis/trans, and 62% ee were obtained for
(E)-but-2-enal.17
(19) For some asymmetric examples catalyzed by indium, see: (a) Lu,
J.; Hong, M. L.; Ji, S. J.; Teo, Y. C.; Loh, T. P. Chem. Commun. 2005,
4217. (b) Teo, Y. C.; Goh, J. D.; Loh, T. P. Org. Lett. 2005, 7, 2743. (c)
Lu, J.; Ji, S. J.; Teo, Y. C.; Loh, T. P. Org. Lett. 2005, 7, 159. (d) Zheng,
K.; Qin, B.; Liu, X. H.; Feng, X. M. J. Org. Chem. 2007, 72, 8478. (e)
Zhang, X.; Chen, D. H.; Liu, X. H.; Feng, X. M. J. Org. Chem. 2007, 72,
5227. (f) Fujimoto, T.; Endo, K.; Tsuji, H.; Nakamura, M.; Nakamura,
E. J. Am. Chem. Soc. 2008, 130, 4492. (g) Schneider, U.; Ueno, M.;
Kobayashi, S. J. Am. Chem. Soc. 2008, 130, 13824. (h) Kim, S. J.; Jang,
D. O. J. Am. Chem. Soc. 2010, 132, 12168. (i) Haddad, T. D.; Hirayama,
L. C.; Singaram, B. J. Org. Chem. 2010, 75, 642.
Org. Lett., Vol. 13, No. 15, 2011
3869