ORGANIC
LETTERS
2011
Vol. 13, No. 15
3924–3927
Synthesis of the Carboline Disaccharide
Domain of Shishijimicin A
K. C. Nicolaou,*,† J. L. Kiappes,† Weiwei Tian,† Vijaya B. Gondi,‡ and Jochen Becker†
Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037,
United States, and The Department of Chemistry and Biochemistry, University of
California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
Received May 27, 2011
ABSTRACT
A synthetic route to the carboline disaccharide domain (2) of shishijimicin A (1) has been developed. The convergent synthesis relies on a novel
€
application of the ReetzꢀMuller-Starke reaction to form the central, sulfur-bearing quaternary carbon center and addition of the carboline
structural motif as a dianion to a disaccharide aldehyde fragment.
The enediyne class of natural products has captured the
imagination of chemists, biologists and clinicians because
of their novel molecular architectures, potent biological
properties, and medical potential. Thus, investigations of
members of this family of compounds led to important
advances in fundamental science and practical applica-
tions in cancer chemotherapy.1
Isolated from the thin encrusting orange ascidian Di-
demnum proliferum, shishijimicin A (1, Figure 1) has joined
its siblings (B and C)2 and namenamicin3 as the only
members of the enediyne class that originate from marine
sources. All three shishijimicins carry the same enediyne
core as the one found in namenamicin and calicheamicin
γ1 (known as calicheamicinone).4 What sets the shishiji-
I
micins apart from all other enediynes, however, is their
unique carboline structural motif. Indeed, β-carboline is
known to intercalate into double-stranded DNA,5 and a
number of β-carbolines have been shown to cleave DNA
under photoirradiation conditions.6 Shishijimicin A (1) is
the most potent of the shishijimicin family, exhibiting IC50
values of 2.0, 1.8, and 0.47 pM cytotoxicities against 3Y1,
HeLa, and P388 cell lines, respectively.2 In light of these
observations and the extreme scarcityofshishijimicin A, its
total synthesis and that of its carboline disaccharide do-
main are deemed important. In this letter, we report the
† The Scripps Research Institute.
‡ University of California.
(1) For selected reviews on the chemistry, biology and medicinal
applications of the enediynes, see: (a) Nicolaou, K. C.; Dai, W.-M.
Angew. Chem., Int. Ed. Engl. 1991, 30, 1387–1416. (b) Smith, A. L.;
Nicolaou, K. C. J. Med. Chem. 1996, 39, 2103–2117. (c) Grissom, J. W.;
Gunawardena, G. U.; Klingberg, D.; Huang, D. Tetrahedron 1996, 52,
6453–6518. (d) Thorson, J. S.; Sievers, E. L.; Ahlert, J.; Shepard, E.;
Whitwam, R. E.; Onwueme, K. C.; Ruppen, M. Curr. Pharm. Des. 2000,
6, 1841–1879. (e) Jones, G. B.; Fouad, F. S. Curr. Pharm. Des. 2002, 8,
2415–2440. (f) Liang, Z.-X. Nat. Prod. Rep. 2010, 27, 499–528.
(2) Oku, N.; Matsunaga, S.; Fusetani, N. J. Am. Chem. Soc. 2003,
125, 2044–2045.
(4) Lee, M. D. In Enediyne Antibiotics as Antitumor Agents; Borders,
D. B., Doyle, T. W., Eds.; Marcel Dekker Inc.: New York, 1995; p 49.
(5) (a) Smythies, J. R.; Antun, F. Nature 1969, 223, 1061–1063.
(b) Duportail, G.; Lami, H. Biochim. Biophys. Acta 1975, 402, 20–30.
(c) Hayashi, K.; Nagao, M.; Sugimura, T. Nucleic Acids Res. 1977, 4,
3679–3685. (d) Pezzuto, J. M.; Lau, P. P.; Luh, Y.; Moore, P. D.;
Wogan, G. N.; Hecht, S. M. Proc. Natl. Acad. Sci. U.S.A. 1980, 77,
1427–1431. (e) Duportail, G. Int. J. Bio. Macromol. 1981, 3, 188–192.
(f) Tamura, S.; Konakahara, T.; Komatsu, H.; Ozaki, T.; Ohta, Y.;
Takeuchi, H. Heterocycles 1998, 48, 2477–2480. (g) Xiao, S.; Lin, W.;
Wang, C.; Yang, M. Bioorg. Med. Chem. Lett. 2001, 11, 437–441.
(6) Toshima, K.; Okuno, Y.; Nakajima, Y.; Matsumura, S. Bioorg.
Med. Chem. Lett. 2002, 12, 671–673.
(3) McDonald, L. A.; Capson, T. L.; Krishnamurthy, G.; Ding,
W.-D.; Ellestad, G. A.; Bernan, V. S.; Maiese, W. M.; Lassota, P.;
Discafani, C.; Kramer, R. A.; Ireland, C. M. J. Am. Chem. Soc. 1996,
118, 10898–10899.
r
10.1021/ol201444t
Published on Web 06/28/2011
2011 American Chemical Society