In summary, we have demonstrated remarkable structural
and photophysical properties for a novel silver(I) supramolecular
compound consisting of a binuclear luminophoric cation
ion-paired by a pentanuclear cluster. Cooperative supra-
molecular interactions in the cationic stacks combined with
Ag heavy-atom effects imparted fascinating luminescence
across the UV/Vis region.
Support by the National Science Foundation (CHE-0911690
to M.A.O.) and the Robert A. Welch Foundation (B-1542 to
M.A.O. and Y-1289 to H.V.R.D.) is gratefully acknowledged.
C. Y. dedicates this manuscript to Prof. Yansheng Yang.
Notes and references
y 1: a solution of a mixture of L (41.6 mg, 0.1 mmol) in MeCN (5 mL)
and [(3,5-(CF3)2Pz)Ag]3 (186.4 mg, 0.2 mmol) in CH2Cl2 (20 mL) was
stirred at 60 1C for 0.5 h. The resulting yellow precipitate was collected
by filtration and washed with Et2O and cold CH2Cl2. Orange single
crystals of 1 were obtained by vapour diffusion of CH2Cl2 into MeCN
solution. Mp 263–265 1C (Dec.); elemental analysis: calcd (%) for
C83H66Ag7F42N31: C 32.68, H 2.18, N 14.23; found (%): C 32.88,
H 2.09, N 14.31. 1H NMR (CDCl3, RT): d 1.20 (t, 12H, J = 4 Hz,
NCH2CH3), 1.91 (s, 12H, CH3), 2.01 (s, 3H, CH3CN), 2.67 (s, 12H,
CH3), 3.41 (q, J = 4 Hz, 8H, NCH2CH3), 5.93 (s, 2H, 3,5-(CH3)2Pz-H),
6.00 (s, 1H, 3,5-(CF3)2Pz-H of cation), 6.54 (d, J = 4 Hz, 4H, Ph-H),
6.78 (s, 6H, 3,5-(CF3)2Pz-H of anion), 7.98 (d, J = 4 Hz, 4H, Ph-H).
z Crystal data for 1: C83H66F42N31Ag7, FW = 3050.76, monoclinic,
P21/a, a = 13.2664(5) A, b = 38.8979(15) A, c = 20.6041(8) A, b =
102.919(1)1, V = 10363.3(1) A3, Z = 4, T = 100 K, Dc = 1.924 g cmꢀ3
R1 = 0.0424, wR2 = 0.0916, GOF = 1.179. CCDC 640177.
;
Fig. 2 Top: emission spectra of 1 in MeCN: a: 2.5 ꢂ 10ꢀ7, b: 1.2 ꢂ 10ꢀ6
,
1 S. K. Pal, M. E. Itkis, F. S. Tham, R. W. Reed, R. T. Oakley and
R. C. Haddon, Science, 2005, 309, 281, and references therein.
2 A. Ben-Shem, F. Frolow and N. Nelson, Nature, 2003, 426, 630.
c: 3.6 ꢂ 10ꢀ6, d: 1.4 ꢂ 10ꢀ5, e: 7.2 ꢂ 10ꢀ5, f: 2.8 ꢂ 10ꢀ4, g: 8.6 ꢂ 10ꢀ4
,
and h: 2.6 ꢂ 10ꢀ3 mol Lꢀ1. Bottom: crystal emission (lexc = 330 nm)
´
3 M. Rooman, J. Lievin, E. Buisine and R. Wintjens, J. Mol. Biol.,
2002, 319, 67.
vs. temperature.
4 R. S. Lokey and B. L. Iverson, Nature, 1995, 375, 303.
5 J. M. Giaimo, A. V. Gusev and M. R. Wasielewski, J. Am. Chem.
Soc., 2002, 124, 8530.
6 W. Lu, N. Zhu and C. M. Che, Chem. Commun., 2002, 900.
7 A. J. Goshe, I. M. Steele and B. Bosnich, J. Am. Chem. Soc., 2003,
125, 444.
8 L. Zhao and T. C. W. Mak, J. Am. Chem. Soc., 2005, 127, 14966.
9 (a) M. A. Omary, T. R. Webb, Z. Assefa, G. E. Shankle and
H. H. Patterson, Inorg. Chem., 1998, 37, 1380; (b) H. H. Patterson,
S. M. Kanan and M. A. Omary, Coord. Chem. Rev., 2000, 208, 227.
10 M. A. Rawashdeh-Omary, M. D. Rashdan, S. Dharanipathi,
O. Elbjeirami, P. Ramesh and H. V. R. Dias, Chem. Commun.,
2011, 47, 1160.
11 (a) S.-L. Zheng, J.-P. Zhang, W.-T. Wong and X.-M. Chen, J. Am.
Chem. Soc., 2003, 125, 6882; (b) S.-L. Zheng, J.-H. Yang and
X.-M. Chen, Chin. J. Struct. Chem., 2009, 28, 1503.
12 V. W.-W. Yam and K. K.-W. Lo, Chem. Soc. Rev., 1999, 28, 323.
13 C. Yang, L.-M. Fu, Y. Wang, J.-P. Zhang, W.-T. Wong, X.-C. Ai,
Y.-F. Qiao, B.-S. Zou and L.-L. Gui, Angew. Chem., Int. Ed., 2004,
43, 5010 (Angew. Chem., 2004, 116, 5120).
14 H. V. R. Dias, S. A. Polach and Z. Wang, J. Fluorine Chem., 2000,
103, 163.
15 M. A. Omary, M. A. Rawashdeh-Omary, H. V. K. Diyabalanage
and H. V. R. Dias, Inorg. Chem., 2003, 42, 8612.
16 G. Baum, E. C. Constable, D. Fenske, C. E. Housecroft and
T. Kulke, Chem. Commun., 1998, 2659.
17 J. C. Vickery, M. M. Olmstead, E. Y. Fung and A. L. Balch,
Angew. Chem., Int. Ed. Engl., 1997, 36, 1179.
18 G. Mezei, P. Baran and R. G. Raptis, Angew. Chem., Int. Ed.,
2004, 43, 574.
19 G. A. Ardizzoia, M. A. Angaroni, G. La Monica, F. Cariati, M. Moret
and N. Masciocchi, J. Chem. Soc., Chem. Commun., 1990, 1021.
20 C. Yang, X. Wang and M. A. Omary, Angew. Chem., Int. Ed.,
2009, 48, 2500 (Angew. Chem., 2009, 121, 2538).
band with a maximum at B600 nm dominates at higher
temperatures, whereas the higher-energy emission with B525 nm
maximum dominates at lower temperatures. These two over-
lapping emissions can be distinguished by their respective
lifetimes at lower temperatures, nearly seconds for the green
emission (B0.4 s at 77 K) and milliseconds for the orange
emission (B96 ms at 77 K). Visually, irradiation of solid 1
with a hand-held UV lamp at near liquid nitrogen tempera-
tures results in bright orange emission that turns into green
when the UV illumination is turned off, consistent with the
aforementioned lifetime magnitudes. The green phosphorescence
band is present in the Gd(III) complex of L, rendering an
assignment to triplet emission from coordinated L.13 The
orange phosphorescence is more broad and brighter than the
green band, suggesting triplet emission from aggregated stacks
of the coordinated L ligand via Agꢁ ꢁ ꢁAg, pꢁ ꢁ ꢁp, and Agꢁ ꢁ ꢁp
interactions. Consistent with this assignment is the observation
that the intensities and lifetimes of the two triplet emission
bands decrease concomitantly upon heating. Finally, the overall
spectral data suggest that the light harvesting and emission
processes in 1 are primarily localized on the AgL cations,
whereas the pentanuclear anions simply act as counterions
from a photophysics standpoint. This is evidenced by the fact
that the fluorous metal–organic framework FMOF-1,20 which
comprises a similar [AgI(m-NN)]n high-nuclearity cluster to the
anionic cluster in 1, is not luminescent even at 77 K.
c
7436 Chem. Commun., 2011, 47, 7434–7436
This journal is The Royal Society of Chemistry 2011