Phosphoryl Transfer of N-Phosphoryl Amino Acids
Mazza, J. Am. Chem. Soc. 1997, 119, 12089–12094; d) S. Tzvet-
kova, R. Kluger, J. Am. Chem. Soc. 2007, 129, 15848–15854.
a) P. V. Attwood, M. J. Piggott, X. L. Zu, P. G. Besant, Amino
Acids 2007, 32, 145–156; b) E. A. Ruben, M. S. Chapman, J. D.
Evanseck, J. Am. Chem. Soc. 2005, 127, 17789–17798; c) K.
Hakansson, D. B. Wigley, Proc. Natl. Acad. Sci. USA 1998, 95,
1505–1510.
a) Y. F. Zhao, P. S. Cao, J. Biol. Phys. 1994, 20, 283–287; b)
W. H. Zhou, Y. Ju, Y. F. Zhao, Q. G. Wang, G. A. Luo, Origins
Life Evol. Biosphere 1996, 26, 547–560; c) Z. Z. Chen, B. Tan,
Y. M. Li, Y. F. Zhao, J. Org. Chem. 2003, 68, 4052–4058.
H. Fu, Z. Z. Li, Y. F. Zhao, G. Z. Tu, J. Am. Chem. Soc. 1999,
121, 291–295.
= 3.44 (d, J = 10.4 Hz, 3 H), 3.08–3.15 (m, 2 H), 1.95–1.97 (m, 4
H), 1.75–1.78 (m, 4 H), 1.62 (d, J = 12.8 Hz, 2 H), 1.24–1.37 (m,
8 H), 1.10–1.19 (m, 2 H) ppm. 13C NMR (100 MHz, D2O): δ =
51.4 (d, J = 5 Hz), 50.2, 30.2, 24.2, 23.7 ppm. 31P NMR (162 MHz,
D2O): δ = 9.64 ppm.
[4]
[5]
Aminoacyl Methyl Phosphate: The title compound was synthesized
according to a literature method.[30] N,NЈ-Dicyclohexylcarbodiim-
ide (DCC, 0.43 g, 2.1 mmol) was added to a flask containing N-
Boc-amino acid (0.95 g, 4.4 mmol) in CH2Cl2 (30 mL) at room
temperature. The resulting reaction mixture was stirred for 5 min
under argon and methyl phosphate N,NЈ-diisopropyl-N-ethyl-
ammonium (DIEA) salt dissolved in CH3CN (5 mL) was added.
The reaction mixture was stirred at room temperature for 1 h. After
the reaction was complete, the resulting mixture was filtered and
washed with CH2Cl2 (10 mL). The CH2Cl2 solution was then ex-
tracted three times with water (18 mL). Then the aqueous phases
were combined, frozen and lyophilized. The product was purified
by short silica gel column chromatography using acetone as eluent
to remove inorganic salts. The solvent was removed in vacuo to
give N-Boc-amino acid methyl phosphate DIEA salt.
[6]
[7]
[8]
C. M. Cheng, X. H. Liu, Y. M. Li, Y. Ma, B. Tan, R. Wan,
Y. F. Zhao, Origins Life Evol. Biosphere 2004, 34, 455–464.
a) Y. Yamagata, H. Watanabe, M. Saitoh, T. Namba, Nature
1991, 352, 516–519; b) A. W. Schwartz, Philos. Trans. R. Soc.
London, Ser. B 2006, 361, 1743–1749; c) M. A. Pasek, T. P. Kee,
D. E. Bryant, A. A. Pavlov, J. I. Lunine, Angew. Chem. Int. Ed.
2008, 47, 7918–7920.
a) J. Rabinowitz, J. Flores, R. Krebsbach, G. Rogers, Nature
1969, 224, 795–796; b) X. Gao, Y. Liu, P. X. Xu, Y. M. Cai,
Y. F. Zhao, Amino Acids 2008, 34, 47–53; c) F. Ni, S. T. Sun,
C. Huang, Y. F. Zhao, Green Chem. 2009, 11, 569–573; d) F.
Ni, X. Gao, Z. X. Zhao, C. Huang, Y. F. Zhao, Eur. J. Org.
Chem. 2009, 18, 3026–3035.
a) S. J. Benkovic, P. A. Benkovic, J. Am. Chem. Soc. 1967, 89,
4714–4722; b) E. J. Sampson, J. Fedor, P. A. Benkovic, S.
Benkovic, J. Org. Chem. 1973, 38, 1301–1306.
F. Ni, W. Li, Y. M. Li, Y. F. Zhao, Curr. Protein Pept. Sci. 2005,
6, 437–442.
a) L. F. Landweber, Proc. Natl. Acad. Sci. USA 1999, 96,
11067–11068; b) R. Pascal, L. Boiteau, A. Commeyras, Top.
Curr. Chem. 2005, 259, 69–122.
a) C. R. Wagner, V. V. Iyer, E. J. McIntee, Med. Res. Rev. 2000,
20, 417–451; b) D. Cahard, C. McGuigan, J. Balzarini, Mini-
Rev. Med. Chem. 2004, 4, 371–381; c) S. J. Hecker, M. D. Erion,
J. Med. Chem. 2008, 51, 2328–2345; d) Y. Mehellou, J. Balzar-
ini, C. McGuigan, ChemMedChem 2009, 4, 1779–1791.
a) J. Balzarini, A. Karlsson, S. Aquaro, C. F. Perno, D. Cahard,
L. Naesens, E. D. Clercq, Proc. Natl. Acad. Sci. USA 1996, 93,
7295–7299; b) M. Derudas, D. Carta, A. Brancale, C. Vanpou-
ille, A. Lisco, L. Margolis, J. Balzarini, C. McGuigan, J. Med.
Chem. 2009, 52, 5520–5530; c) C. L. Chen, G. Yu, T. K. Venka-
tachalam, F. M. Uckun, Drug Metab. Dispos. 2002, 30, 1523–
1531.
a) O. Adelfinskaya, P. Herdewijn, Angew. Chem. Int. Ed. 2007,
46, 4356–4358; b) O. Adelfinskaya, M. Terrazas, M. Froeyen,
P. Marliere, K. Nauwelaerts, P. Herdewijn, Nucleic Acids Res.
2007, 35, 5060–5072; c) M. Terrazas, P. Marliere, P. Herdewijn,
Chem. Biodiversity 2008, 5, 31–39.
[9]
Aminoacyl methyl phosphate was obtained by adding a minimum
amount of TFA to the N-Boc-glycyl methyl phosphate. After
30 min, an excess of diethyl ether was added to precipitate the prod-
uct. Following centrifugation, the Et2O was decanted, the precipi-
tate was washed twice by agitation with Et2O followed by centrifu-
gation and decantation. The solid product was dried under vac-
uum.
[10]
[11]
[12]
1
Glycyl Methyl Phosphate (8): H NMR (400 MHz, D2O): δ = 3.90
(s, 2 H), 3.63 (d, J = 11.6 Hz, 3 H) ppm. 13C NMR (100 MHz,
D2O): δ = 164.7 (d, J = 9.0 Hz), 54.1 (d, J = 5 Hz), 40.7 (d, J =
8 Hz) ppm. 31P NMR (162 MHz, D2O): δ = –6.4 ppm. MS (ESI,
positive ion mode): m/z = 191.8 [M + H]+.
[13]
[14]
Alaninyl Methyl Phosphate (9): 1H NMR (400 MHz, D2O): δ =
4.19 (q, J = 7.6 Hz, 1 H), 3.61 (d, J = 11.6 Hz, 3 H), 1.54 (d, J =
7.2 Hz, 3 H) ppm. 13C NMR (100 MHz, D2O): δ = 164.7 (d, J =
9.0 Hz), 66.0, 54.1, 40.7 (d, J = 8.0 Hz) ppm. 31P NMR (162 MHz,
D2O): δ = –6.2 ppm. MS (ESI, positive ion mode): m/z = 205.9 [M
+ H]+.
Supporting Information (see footnote on the first page of this arti-
cle): LC-ESI-MS spectra of entry 1, 31P NMR spiking spectra of
products 2, 7, 8 and 9, HPLC chromatograms of entries 1–9 and
standard samples.
[15]
Acknowledgments
[16]
[17]
S. Michielssens, N. T. Trung, M. Froeyen, P. Herdewijn, M. T.
Nguyen, A. Ceulemans, Phys. Chem. Chem. Phys. 2009, 11,
7274–7285.
a) H. Fu, L. Xu, Q. Lv, J. Z. Wang, H. Z. Xiao, Y. F. Zhao,
Rapid Commun. Mass Spectrom. 2000, 14, 1813–1822; b) X.
Gao, F. Ni, J. Bao, Y. Liu, P. X. Xu, Y. F. Zhao, J. Mass Spec-
trom. 2010, 45, 779–787.
T. Lonnberg, M. Ora, H. Lonnberg, Mini-Rev. Org. Chem.
2010, 7, 33–43.
a) K. N. Allen, D. Dunaway-Mariano, Trends Biochem. Sci.
2004, 29, 495–503; b) P. P. Dzeja, R. Bortolon, C. Perez-Terzic,
E. L. Holmuhamedov, A. Terzic, Proc. Natl. Acad. Sci. USA
2002, 99, 10156–10161; c) J. R. Knowles, Annu. Rev. Biochem.
1980, 49, 877–919.
We are grateful for financial support from the National Natural
Science Foundation of China (NSFC) (grant numbers 21075103,
20972130, 20805037, and 20732004). We thank Prof. G. M. Black-
burn for helpful suggestions.
[1] a) A. R. Lewinsohn, M. Paecht-Horowitz, A. Katchalsky, Bi-
ochim. Biophys. Acta 1967, 140, 24–36; b) P. Schimmel, Annu.
Rev. Biochem. 1987, 56, 125–158.
[2] a) J. P. Biron, R. Pascal, J. Am. Chem. Soc. 2004, 126, 9198–
9199; b) J. P. Biron, A. L. Parkes, R. Pascal, J. D. Sutherland,
Angew. Chem. Int. Ed. 2005, 44, 6731–6734; c) L. J. Leman,
L. E. Orgel, M. R. Ghadiri, J. Am. Chem. Soc. 2006, 128, 20–
21.
[18]
[19]
[20]
[3] a) F. H. Westheimer, Science 1987, 235, 1173–1178; b)
N. S. M. D. Wickramasinghe, M. P. Staves, J. C. Lacey, Bio-
chemistry 1991, 30, 2768–2772; c) R. Kluger, R. W. Loo, V.
I. S. Kulaev, V. M. Vagabov, T. V. Kulakovskaya, The Biochem-
istry of Inorganic Polyphosphates, 2nd ed., Wiley, Chichester,
2004, pp. 194–204.
Eur. J. Org. Chem. 2011, 3220–3228
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3227