124
Y.-J. Liu et al. / Inorganica Chimica Acta 387 (2012) 117–124
Table 2
ꢀ
Scavenging ratio (%) of ligands and complexes against OH.
ꢀ
Comp
Average inhibition (%) for OH
0.5 (l
M)
1.0 (l
M)
1.5 (l
M)
2.0 (l
M)
2.5 (l
M)
3.0 (l
M)
3.5 (l
M)
4.0 (l
M)
4.5 (lM)
APIP
HAPIP
1
6.59
4.96
1.13
3.56
10.85
14.54
1.88
19.76
36.52
6.04
25.19
47.52
17.36
22.88
33.72
61.35
23.39
24.50
47.28
66.67
35.47
29.74
52.92
68.76
41.88
36.27
60.46
73.05
67.17
48.74
68.99
76.60
80.38
73.85
2
3.59
14.70
hydroxyl radical (ꢀOH) in aqueous media was generated by the Fen-
ton system. The antioxidant activity of ligands, APIP and HAPIP and
their complexes 1 and 2 were investigated. Fig. 11 depicts the
inhibitory effect of ligands and complexes on ꢀOH. The average sup-
pression ratio against ꢀOH (Table 2) valued from 6.59% to 72.86% for
APIP, 4.96% to 82.27% for HAPIP, 1.13% to 93.96% for complex 1, and
3.59% to 77.45% for complex 2. The antioxidant activity against hy-
droxyl radical of complex 1 appeared higher than that of complex 2
[3] Y.J. Liu, C.H. Zeng, Z.H. Liang, J.H. Yao, H.L. Huang, Z.Z. Li, F.H. Wu, Eur. J. Med.
Chem. 45 (2010) 3087.
[4] S. Shi, X.T. Geng, J. Zhao, T.M. Yao, C.R. Wang, D.J. Yang, L.F. Zheng, L.N. Ji,
Biochimie 92 (2010) 370.
[5] J. Tan, B.C. Wang, L.C. Zhu, Bioorg. Med. Chem. 17 (2009) 614.
[6] M. Roy, R. Santhanagopal, A.R. Chakravarty, Dalton Trans. (2009) 1024.
[7] Q. Wang, Z.Y. Yang, G.F. Qi, D.D. Qin, Biometals 22 (2009) 927.
[8] G. Zuber, J.C. Quada, S.M. Hecht Jr., J. Am. Soc. Chem. 120 (1998) 9368.
[9] S.M. Hecht, J. Nat. Prod. 63 (2000) 158.
[10] A. Sigel, H. Sigel (Eds.), vol. 33, Marcel Dekker, New York, 1996, p. 177.
[11] L.N. Ji, X.H. Zou, J.G. Liu, Coord. Chem. Rev. 216–217 (2001) 513.
[12] V.G. Vaidyananthan, B.H. Nair, Dalton Trans. (2005) 2842.
[13] P.P. Pelligrini, J.P. Aldrich-Wright, Dalton Trans. (2003) 176.
[14] P.U. Maheswari, M. Palaniandavar, Inorg. Chim. Acta 357 (2004) 901.
[15] P. Lincoln, B. Norden, Int. Pat., WO 99/15535, 1999.
[16] J. Liu, X.H. Zou, Q.L. Zhang, W.J. Mei, J.Z. Liu, L.N. Ji, Met.-Based Drugs 7 (2000)
343.
at the concentration range (from 3.0 to 4.5 lM) under the same
experimental condition. For complex 1, the hydroxyl radical scav-
enging ability can be enhanced when ligand (APIP) bonds metal
center to form complex at high concentrations. However, the anti-
oxidant activity of ligand (HAPIP) is weakened when it bonds metal
center to form complex 2. These results suggest that ligands and
their complexes may be potential drugs to eliminate the hydroxyl
radical.
[17] C.A. Puckett, J.K. Barton, J. Am. Chem. Soc. 129 (2007) 46.
[18] D.L. Ma, C.M. Che, F.M. Siu, M. Yang, K.Y. Wong, Inorg. Chem. 46 (2007) 740.
[19] G.L. Pascu, A.C.G. Hotze, C. Sanchez-Cano, B.M. Kariuki, M.J. Hannon, Angew.
Chem. 119 (2007) 4452.
[20] T.R. Krugh, J.W. Neely, Biochemistry 12 (1973) 4418.
[21] J. Marmur, J. Mol. Biol. 3 (1961) 208.
4. Conclusion
[22] M.E. Reichmann, S.A. Rice, C.A. Thomas, P. Doty, J. Am. Chem. Soc. 76 (1954)
3047.
[23] Y. Xiong, X.F. He, X.H. Zou, J.Z. Wu, X.M. Chen, L.N. Ji, R.H. Li, J.Y. Zhou, K.B. Yu, J.
Chem. Soc., Dalton Trans. 1 (1999) 19.
Two new ligands APIP, HAPIP and relative two ruthenium(II)
complexes [Ru(bpy)2(APIP)]2+ and [Ru(bpy)2(HAPIP)]2+ were syn-
thesized and characterized. The DNA-binding behaviors show
these complexes interact with CT DNA by intercalation. Complexes
1 and 2 can inhibit the proliferation of the selected cell lines in dif-
ferent degree. Apoptotic assay suggests that complexes 1 and 2 can
induce apoptosis. The cellular uptake shows these complexes can
enter into the cytoplasm and accumulate in the nuclei. Upon irra-
diation at 365 nm, complexes 1 and 2 can cleave the plasmid DNA.
The studies on the mechanism of photocleavage demonstrate that
superoxide anion radical (O2ꢀꢁ) and singlet oxygen (1O2) may play
an important role. At high concentration, complexes 1 and 2 can
effectively condense the pGL 3 DNA. The antioxidant experiments
against hydroxyl radical show the ligands and complexes possess
excellent antioxidant abilities.
[24] J.G. Liu, B.H. Ye, H. Chao, Q.X. Zhen, L.N. Ji, Chem. Lett. 28 (1999) 1085.
[25] B.P. Sullivan, D.J. Salmon, T.J. Meyer, Inorg. Chem. 17 (1978) 3334.
[26] A. Wolf, G.H. Shimer Jr., T. Meehan, Biochemistry 26 (1987) 6392.
[27] J.B. Chaires, N. Dattagupta, D.M. Crothers, Biochemistry 21 (1982) 3933.
[28] A.E. Friedman, J.C. Chambron, J.P. Sauvage, N.J. Turro, J.K. Barton, J. Am. Chem.
Soc. 112 (1990) 4960.
[29] S. Satyanaryana, J.C. Dabrowial, J.B. Chaires, Biochemistry 31 (1993) 9319.
[30] G. Cohen, H. Eisenberg, Biopolymers 8 (1969) 45.
[31] T.J. Mosmann, Immunol. Methods 65 (1983) 55.
[32] D.L. Spector, R.D. Goldman, L.A. Leinwand, In cells: a laboratory manual, vol. 1,
Cold Spring Harbor Laboratory Press, New York, 1998 (Chapter 15).
[33] C.C. Winterbourn, Free Radic. Biol. Med. 3 (1987) 33.
[34] S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry 32 (1993) 2573.
[35] H.L. Huang, Y.J. Liu, C.H. Zeng, L.X. He, F.H. Wu, DNA Cell Biol. 29 (2010) 261.
[36] Q. Wang Q, Z.Y. Yang, G.F. Qi, D.D. Qin, Eur. J. Med. Chem. 44 (2009) 2425.
[37] Y.J. Liu, C.H. Zeng, J.H. Yao, F.H. Wu, L.X. He, H.L. Huang, Chem. Biodivers. 7
(2010) 1770.
[38] J.K. Barton, A. Danishefsky, J. Goldberg, J. Am. Chem. Soc. 106 (1984) 2172.
[39] X.Q. He, Q.Y. Lin, R.D. Hu, Spectrochim. Acta, Part A 68 (2007) 184.
[40] R.B. Nair, E.S. Teng, S.L. Kirkland, C.J. Murphy, Inorg. Chem. 37 (1998) 139.
[41] L.F. Tan, H. Chao, Y.J. Liu, B. Sun, W. Wei, L.N. Ji, J. Inorg. Biochem. 99 (2005)
513.
Acknowledgements
[42] Y.J. Liu, Z.H. Liang, Z.Z. Li, C.H. Zeng, J.H. Yao, H.L. Huang, F.H. Wu, Biometals 23
(2010) 739.
[43] C. Zhao, H. Lin, S. Zhu, H. Sun, Y. Chen, J. Inorg. Biochem. 70 (1998) 219.
[44] M. Howe-Grant, K.C. Wu, W.R. Bauer, S.J. Lippart, Biochemistry 15 (1976) 4339.
[45] J.D. McGhee, P.H. von Hippel, J. Mol. Biol. 86 (1974) 469.
[46] M.J. Waring, J. Mol. Biol. 13 (1965) 269.
This work was supported by the National Nature Science Foun-
dation of China (Nos. 31070858 and 30800227) and Guangdong
Pharmaceutical University for financial supports.
[47] G.A. Neyhart, N. Grover, S.R. Smith, W.A. Kalsbeck, T.A. Fairly, M. Cory, H.H.
Thorp, J. Am. Chem. Soc. 115 (1993) 4423.
References
[48] D. Vinatier, P.H. Dufour, D. Subtil, Eur. J. Obstet. Gyn. RB 67 (1996) 85.
[49] U. Udilova, A.V. Kozlov, W. Bieberschulte, K. Frei, K. Ehrenberger, H. Nohl,
Biochem. Pharm. 65 (2003) 59.
[1] U. Schatzschneider, J. Niesel, I. Ott, R. Gust, H. Alborzinia, S. Wölfl,
ChemMedChem 3 (2008) 1104.
[2] L.F. Tan, J.L. Shen, X.J. Chen, X.L. Liang, DNA Cell Biol. 28 (2009) 461.