Journal of the American Chemical Society
Page 4 of 5
1
2
Notes
The authors declare no competing financial interest.
3
4
5
6
Equal Contribution
†These authors contribute equally.
Vol 1. P63, Thieme: Stuttgart, New York, 2013. For some examples, see:
(f) Alexanian, E. J.; Lee, C.; Sorensen, E. J. J. Am. Chem. Soc. 2005, 127,
7690. (g) Streuff, J.; Hövelmann, C. H.; Nieger, M.; Muñiz, K. J. Am.
Chem. Soc. 2005, 127, 14586. (h) Muñiz, K. J. Am. Chem. Soc. 2007, 129,
14542. (h) Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E.
J. Am. Chem. Soc., 2009, 131, 9488. (i) Sibbald, P. A.; Michael, F. E. Org.
Lett. 2009, 11, 1147.
(13) (a) Wu, T.; Yin, G.; Liu, G. J. Am. Chem. Soc. 2009, 131, 16354. (b)
Yin, G.; Wu, T.; Liu, G. Chem. Eur. J. 2012, 18, 451. (c) Zhu, H.; Chen,
P.; Liu, G. J. Am. Chem. Soc. 2014, 136, 1766. (d) Chen, C.; Chen, P.; Liu,
G. J. Am. Chem. Soc. 2015, 137, 15648. (e) Zhu, H.; Chen, P.; Liu, G. Org.
Lett. 2015, 17, 1485.
(14) Our initial studies on the asymmetric aminoacetoxylation were based
on our previously reported H2O2/HOAc system, in which reactions using
chiral ligands always provided the product in poor yields and low
enantioselectivities; in addition, significant side reactions took place. For
details, see the S1 in the Supporting Information.
7
8
9
ACKNOWLEDGMENT
We are grateful for financial support from the National Basic
Research Program of China (973-2015CB856600), the National
Nature Science Foundation of China (Nos. 21532009, 21472217,
21790330 and 21761142010), the Science and Technology
Commission of Shanghai Municipality (Nos. 17XD1404500 and
17JC1401200), and the strategic Priority Research Program (No.
XDB20000000) and the Key Research Program of Frontier
Science (QYZDJSSW-SLH055) of the Chinese Academy of
Sciences.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
( 15 ) For some examples of the efficient activation of olefins with
electrophilic palladium catalysts, see: (a) Cheng, J.; Qi, X.; Li, M.; Chen,
P.; Liu, G. J. Am. Chem. Soc. 2015, 137, 2480. (b) Chen, C.; Luo, Y.; Fu,
L.; Chen, P.; Lan, Y.; Liu, G. J. Am. Chem. Soc. 2018, 140, 1207 .
(16) Recently, Stahl and Yang demonstrated that when olefins coordinated
to the (Pyox)Pd(II) complex the olefins were located on the opposite side
of pyridines, due to the weaker PyN-Pd bond than the OxN-Pd bond. For
details, see refs. 6c, 8, 9 and (a) Mei, T.-S.; Werner, E. W.; Burckle, A. J.;
Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 6830. (b) Xu, L.; Hilton, M.
J.; Zhang, X.; Norrby, P.-O.; Wu, Y.-D. Sigman, M. S.; Wiest, O. J. Am.
Chem. Soc. 2014, 136, 1960.
(1) (a) Brown, E. G. In Ring Nitrogen and Key Biomolecules; Springer:
Boston, MA, 1998. (b) Brunhofer, G.; Fallarero, A.; Karlsson, D.; Batista-
Gonzalez, A.; Shinde, P.; Gopi M.; Vuorela, P. Bioorg. Med.
Chem. 2012, 20, 6669. (c) Sriphong, L.; Sotanaphun, U.; Limsirichaikul,
S.; Wetwitayaklung, P.; Chaichantipyuth, C.; Pummangura, S. Planta
Med. 2003, 69, 1054.
(2) Chen, J.; Taipale, J.; Cooper, M. Genes. Dev. 2002, 16, 2743.
(3) (a) Yao K, Nagashima K, Miki H. J. Pharmacol Sci. 2006,100, 243. (b)
(17) For the X-ray data of (L1)PdCl2 (Scheme 3b), bond lengths (Å): PyN-
Pd (2.162) > OxN-Pd (1.999); Pd-Cl1 (2.283) > Pd-Cl2 (2.251) [Cl1
opposite to OxN, Cl2 opposite to PyN].
(18) For the X-ray data of (MePyox)PdCl2 and (HPyox)PdCl2, see: (a) De
Crisci, A. G.; Chung, K.; Oliver, A. G.; Solis-Ibarra, D.; Waymouth, R. M.
Organometallics 2013, 32, 2257. (b) Dodd, D. W.; Toews, H. E.; Carneiro,
F. d. S.; Jennings, M. C.; Jones, N. D. Inorg. Chim. Acta. 2006, 359, 2850.
(19) When Bu4NOAc (1 equiv.) was added to the standard condition, the
significantly decreased enantioselectivity (73% ee, 33% yield) was
observed, in which a SN2 type reductive elimination was possibly occurred
due to the extra acetate. The explanation was provided in SI, and Geier, M.
J.; Aseman, M. D.; Gagne, M. R. Organometallics 2014, 33, 4353.
(20) Stahl and coworkers reported that acids could promote benzoates to
dissociate from a Pd(II) complex due to the hydrogen-bonding. For details,
see: (a) Konnick, M. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 5753.
(b) Ye, X.; Liu, G.; Popp, B. V.; Stahl, S. S. J. Org. Chem. 2011, 76, 1031.
( 4 ) (a) Royer, J.; Husson, H. P. Asymmetric Synthesis of Nitrogen
S.; Panda, G. Org. Biomol. Chem. 2014, 12, 6297.
(5) For some reviews, see: (a) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem.
Rev. 2011, 111, 2981. (b) Liu, X.; Chen, P.; Wu, F. Chin. J. Org. Chem.
2016, 36, 1797. For some examples of Pd(0/II) catalytic cycles, see: (c)
Liu, Y.; Xie, Y.; Wang, H.; Huang, H. J. Am. Chem. Soc. 2016, 138, 4314.
(d) Mai, D. N.; Wolfe, J. P. J. Am. Chem. Soc. 2010, 132, 12157. (e) Du,
H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2008, 130, 8590-8591.
(6) (a) Yip, K.-T.; Yang, M.; Law, K.-L.; Zhu, N.-Y.; Yang, D. J. Am.
Chem. Soc. 2006,128, 3130. (b) He, W.; Yip, K.-T.; Zhu, N.-Y.; Yang, D.
Org. Lett. 2009, 11, 5626. (c) Du, W.; Gu, Q.; Li, Y.; Lin, Z.; Yang, D.
Org. Lett. 2017, 19, 316.
(7) (a) Yang, G.; Shen, C.; Zhang, W. Angew. Chem. Int. Ed. 2012, 51,
9141. (b) Jiang, F.; Wu, Z.; Zhang, W. Tetrahedron Lett. 2010, 51, 5124.
(8) (a) McDonald, R. I.; White, P. B.; Weinstein, A. B.; Tam, C. P.; Stahl,
S. S. Org. Lett. 2011, 13, 2830. (b) Weinstein, A. B.; Stahl, S. S. Angew.
Chem. Int. Ed. 2012, 51, 11505.
( 21 ) Due to the generation HOAc during the catalytic cycle, the
autocatalysis was observed in the Fig.1b. For the autocatalysis, see,
Flegeau, E. F.; Bruneau, C.; Dixneuf, P. H.; Jutand, A. J. Am. Chem. Soc.
2011, 133, 10161.
(22) For the substrates with different protecting group (Pg), the reactions
gave the desired products as following: Pg = p-MeOC6H4SO2, 73% yield
(93% ee); Pg = p-tBu C6H4SO2, 69% yield (92% ee); Pg = p-NO2 C6H4SO2,
45% yield (81% ee); Pg = o-NO2 C6H4SO2, 9% yield (81% ee); Pg =
Cl3CCH2OSO2, 24% yield (ee nd).
(23) The reaction also yielded small amounts of 5-exo cyclization product
(10%), which was inseparable from other unidentified side products.
(24) The stereochemistry of the reaction is the same as the I(III)-mediated
alkenes, but with different mechanism (ref. 11), see the SI for details.
(25) Although we cannot exclusively rule out the possibility that the
reaction proceeds via an aziridinium intermediate generated from 5-oxo-
trans aminopalladation, we favor the mechanism proposed here.
(9) Ingalls, E. L.; Sibbald, P. A.; Kaminsky, W.; Michael, F. E. J. Am.
Chem. Soc. 2013, 135, 8854.
(10) Zhang, W.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 5336.
(11) Asymmetric I(III)-mediated 6-endo amination of alkenes under metal
free conditions was reported. For details, see: (a) Kong, W.; Feige, P.; de
Haro, T.; Nevado, C. Angew. Chem. Int. Ed. 2013, 52, 2469. For racemic
reactions, see: (b) Lovick, H. M.; Michael, F. E. J. Am. Chem.
Soc. 2010, 132, 1249.
(12) For some reviews, see: (a) Muñiz, K. Angew. Chem Int. Ed. 2009, 48,
9412. (b) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010,
39, 712. (c) Engle, K. M.; Mei, T.-S.; Wang, X.; Yu, J.-Q. Angew. Chem
Int. Ed. 2011, 50, 1478. (d) Hickman, A. J.; Sanford, M. S. Nature 2012,
484, 177. (e) Chen, P.; Liu, G.; Engle, K. M.; Yu, J.-Q. In Science of
Synthesis: Organometallic Complexes of Palladium, Stoltz, B. M.; Ed.
ACS Paragon Plus Environment